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Abstract 

Building a multiple linear prediction model is very challenging when the data 

set contains a large number of candidate covariates as well as a fraction of 

outliers and other contaminations that are difficult to visualize and clean. 

One-step model building and two-step model building are two different 

strategies for linear model selection. One-step model building procedure aims 

to build up a final prediction model in one step by using step-by-step 

algorithm such as Backward elimination (BE). Two-step model building is a 

blend of all possible subset regression and step-by-step algorithms. The first 

step of this procedure, called short-listing, quickly screens out the less 

important variables to form a “reduced set” for further consideration. The 

second step, called segmentation, carefully examines different subsets of the 

variables in the reduced set to build a final prediction model based on only 

the chosen imported ones. The classical one-step and two-step model building 

procedures yield poor results when the data contain outliers and other 

contaminations. Robust version of one-step and two-step model building 

procedures is introduced in this study. An extensive simulation study is 

conducted to compare the performance of one-step model building with two-

step model building. According to the simulation study and real data 

application, the two-step model building procedures perform better than the 

one-step model buildings. 

Keywords: Backward elimination, Contamination, Short-listing, Segmentation, 

Winsorized Correlation. 

 

Introduction 

When the number  of candidate covariates, d , is small, one can choose a 

linear prediction model by computing a reasonable criterion (e.g., Mallows 

CP, AIC, FPE or cross-validation error) for all possible subsets of the 

predictors. However, as d increases, the computational burden of this 

approach (sometimes referred to as all possible subsets regression) 

increases very quickly. Typically, when a large collection of possible 

covariates are available, a parsimonious set is required to select from the 

large collection for the efficient prediction of a response variable. This is 
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one of the reasons why step-by-step model-building algorithms like 

Backward elimination (BE) are popular [1 - 5]. The BE was expressed in 

terms of classical correlation [6].  

Though one-step model building algorithms construct better model for 

large data sets, but these algorithms do not guarantee to take all the 

important covariates in the models. They may also select some noise 

(wrong) covariates in the models. In two-step model building procedure, 

the candidate covariates are sequenced by BE. A learning curve is obtained 

by plotting robust 2R  [7] values to form a list against the number of 

variables in the model. An appropriate size of the short list can be selected 

at the point where the learning curve starts to leave off. All subsets 

selection to the predictors of the short list is applied using the k-fold 

%100 -trimmed cross validation (CV) procedure on data [8]. The subset 

that produces the least prediction error is the final model. 

Classical BE and CV algorithms give poor results when the data contain a 

fraction of contamination. Robust BE procedure has been developed which 

aims to build up a final prediction model in one step using partial F test 

criteria [6]. The k-fold %100 -trimmed cross validation (CV) procedures 

was developed to obtain a subset of predictors in the final model that 

produces the least prediction error [8]. 

In the following part of the paper, the BE and Robust Backward 

Elimination (RBE) procedures have been reviewed as one-step model 

building. The two-step model building procedures has been discussed.  The 

results of a simulation study have been presented and the performance of 

one-step and two-step model building procedures has been compared. Two 

real data applications have been demonstrated. The limitations of one-step 

and two-step model building procedures are also discussed. Finally a 

conclusion is made. 

One-Step Model Building 

The BE algorithm: The BE procedure starts with the full model, and 

removes one covariate at each step. Let jYr
 
denote the correlation between 

jX  and ,Y  and XR  be the correlation matrix of the covariates. The 

predictors that are in the current regression model are called “active” 
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predictors. Suppose without loss of generality 1X  has the minimum 

absolute partial correlation with Y after eliminating the linear effect of 

dXXX ,,, 32   on .1X  Then, 1X  is the first variable that is dropped from 

the regression model. This candidate predictor is called “inactive” predictor. 

Thus to find out the inactive predictor (say, 1X ), the partial correlation 

between  1X
 
and Y after eliminating the linear effect of 

dXXX ,,, 32   on 

1X  is required to compute which is denoted by .23.1 dYr   These partial 

correlations were expressed in terms of original correlations [6]. That is, 

BE algorithm is formulated in terms of sample means, variances and 

correlations. Once the correlation matrix is calculated, the actual 

observations are not required any more. 

BE algorithm is summarized in terms of correlations among the original 

variables as follows. 

1. Let D
 
be the set of all covariates and P  be the subset not containing thj

 
covariate. To remove the first covariate, ,1mX

 
calculate partial 

correlation PjYr .  between jX
 
and Y after eliminating the linear effect of 

covariate belonging to P
 
on .jX  Determine 

1m  = .minarg .PjYr   

2. Let C
 
be a subset containing )1( k  variables that has been removed 

from D  after )1( k steps  ,3 ,2k
 
and P  be the subset not 

containing thj
 
covariate and .C   To remove the kth covariate ,mkX  PjYr .  

between jX  and Y  may be calculated after eliminating the linear effect 

of )1(21 ,, , kmmm XXX   on ,jX  and then determine .minarg .PjYk rm 
 

At each BE step, once the “weakest” covariate (among the remaining 

covariates) is identified, we can perform a partial F -test to decide whether 

to drop this covariate from the model (and continue the process) or to stop. 

The new “weakest” covariate drops from the model only if the partial F -

value, denoted by 
partial

F , is smaller than 90th percentile of F distribution, 

)1 ,1 ,90.0(  knF (say), where k  is the current size of the model excluding 
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the new covariate. Here again, the required quantities can be expressed in 

terms of correlations among the original variables, as we show below. 

When k  covariates 
kXXX ,,, 21 
 
are in the model, and without loss of 

generality 
kX

 
has the smallest absolute partial correlation with Y  after 

adjusting 
kX

 
for ,,,, 11 2 kXXX 

 
the partial F -statistic for 

kX can be 

expressed as   
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The RBE algorithm: A simple robustification of BE algorithm (RBE) can 

be achieved as FS (Forward Selection) and LARS (Least Angle Regression) 

simply by replacing the non-robust ingredient of this algorithm by their 

robust counterparts. That is, the initial correlation matrix is computed using 

adjusted Winsorization method [9] or Spearman's rho that is resistant to 

bivariate outliers [10]. We call RBE based on adjusted Winsorization 

correlation as RBEw and RBE based on Spearman's rho as RBEr. The 

classical correlations are replaced in the partial F statistic by their robust 

counterparts to form a robust partial F  statistic. 

Two-Step Model Building 

The two-step model building procedure contains two consecutive 

procedures: short-listing and segmentation. 

Short-listing: Sequencing aims to first sequence all the candidate 

covariates to form a list in which more important ones are likely to appear 

at the beginning. The first m covariates of the sequenced list will form the 

short list which will be studied further. A suitable step-by-step algorithm is 

required to sequence all the candidate covariates. To sequence the 

candidate covariates, Rahman and Khan proposed an algorithm called BE 

[6]. The sequence generated by BE is not robust against outliers. So RBE 

can be used to sequence the candidate covariates [6].  

Based on the sequenced generated from RBE, we can first generate the 

corresponding “short list” which includes the first m  top ranking 

predictors (equal to or slightly larger than the number of predictors in the 
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final model). But no information is available about the number of 

predictors needed in the model. A graphical tool may be useful to select the 

size of the short list. First a robust regression model is fitted taking only the 

first covariate from the sequence as predictor, and then another covariate is 

added in the model (one variable at a time) by following the orders of the 

covariates in the sequence. Each time the number of variables is increased 

(along the sequence) and a robust regression model is fitted each time to 

compute a robust 2R  measure such that     ,mad/med1 222 YeR   where 

e  is the vector of residuals obtained from the corresponding robust fit [7]. 

Then the learning curve (recall curve) is obtained by plotting these robust 
2R  values against the number of variables in the model. The size of the 

short list ,m  can be selected a the point where the learning curve does not 

have a considerable (increasing) slope anymore.  

Segmentation by RCV: Cross-validation (CV) is a method of estimating 

the error rate of a prediction rule. This estimate is obtained by splitting the 

n  data points into a training sample of size 
tn
 
(used for fitting a prediction 

model, i.e., model construction) and a validation sample of size 
tv nnn   

reserved for assessing the predictive ability of the model. Often k -fold CV 

is used which means that the data set is split randomly into k  blocks of 

approximately equal size. The training sample then consists of   1k  
blocks and the validation sample is given by the left-out block. Each block 

is left out once, so that a prediction is obtained for each of the observations 

in the sample. The average prediction error is calculated based on a number 

of possible random k -fold splits of the data set. Suppose that m  predictors 

are selected as a short list. We apply all-subsets selection to these m  
predictors using k-fold %100 -trimmed cross validation (CV) procedure 

on data [8]. To robustly measure prediction error, we use regression MM 

estimator (M estimator is an extension of MLE and is a robust estimator. 

MM estimator is the development of M estimator). The subset that 

produces the least prediction error is the final model. 

Simulations 

An extensive simulation study similar to Rahman and Khan (2014) is 

carried out to compare the performance of one-step model building and 

two-step model building procedures [6]. The total number of candidate 
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covariates is 40, in which 6a  are nonzero covariates. Two different cases 

according to the different correlation structures among the target covariates: 

“no correlation” case and “moderate correlation” case are considered which 

are discussed below. 

For the no correlation case (a true correlation of 0 between the covariates), 

independent predictors  1 ,0~ NX j  are considered, and response variable 

Y  is generated using the a  nonzero covariates with coefficients  6 ,7  
repeated three times for .6a   

For the moderate-correlation case, two latent variables 2  ,1 , iLi  are 

considered to generate ,67 21 LLY   where  ,1 ,0~ NLi  and   is a 

normal error not related to the latent variables. The nonzero covariates are 

divided in three equal groups, with each group related to exactly one of the 

latent variables by the following relation 

 jij LX 
 

where  .1 ,0~ Nj  Thus, a true correlation between the covariates 

generated with the same latent variable is 0.5. 

For each case, we generated 100 data sets each of which was randomly 

divided into a training sample of size 100 and a test sample of size 100. 

Each training data set was then contaminated as follows. To create 

bivariate outliers, a number of rows (1%) were chosen randomly, and for 

these rows the covariates values were replaced by large positive numbers, 

then the corresponding response values were replaced by large numbers.  

We used one robust algorithm (RBEw) as one-step and two-step model 

building procedures on the cleaned and contaminated training data to select 

and fit the final models and used these models to predict the test data 

outcomes. In the second step of the two-step model building, five-fold 

robust cross validation (RCV) procedure is used. For each simulated data 

set, the 10% trimmed mean of squared prediction error on the test sample 

was recorded.  
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Table 1: Performance of the one-step model building and two-step model 

building procedures in clean and contaminated data for no-correlation and 

correlation cases 

Case Data Method 
6a  

RBEw 

   MSPE Noise Target 

No-correlation  

Cleaned One-step 49.9 (8.1) 12.0 (0.4) 6.0 (0.1) 

 Two-step 31.5 (5.7) 0.0 (0.4) 6.0 (0.1) 

Contaminated One-step 64.5 (13.9) 8.1 (3.0) 6.0 (0.1) 

 Two-step 54.7 (6.0) 3.5 (0.5) 6.0 (0.1) 

Correlation  

Cleaned One-step 69.2 (5.5) 6.0 (1.0) 5.5 (0.5) 

 Two-step 58.0 (3.9) 2.5 (0.6) 5.5 (0.5) 

Contaminated One-step 105.7 (30.6) 4.4 (0.5) 5.2 (2.1) 

 Two-step 91.9 (15.9) 2.4 (1.3) 4.3 (1.8) 

Table 1 shows the average (SD) of mean squared prediction error (MSPE) 

on the test set, the average number of noise variables (Noise) and the 

average number of target variables (Target) for one-step and two-step 

model building procedures by each algorithm. For no-correlation case in 

clean and contaminated data, the test errors produced by two-step model 

building procedure are much smaller than the one-step model building 

procedure. The average (SD) of the third quantity (total number of target 

variables) is similar for both the methods for clean and contaminated data. 

Also the models obtained by two-step procedure contain fewer noise 

variables than the one-step procedure. For correlation case in clean and 

contaminated data, the test errors produced by two-step model building 

procedure are much smaller than one-step model building procedure. Two-

step model building has taken less noise covariates than one-step procedure. 

In this case, two-step model building procedure has selected fewer target 

covariates than one-step model building procedure. For contaminated and 

correlated data, we have considered first 30% (12) covariates as a short list 

for segmentation. If we would consider first 35% to 40% covariates as a 

short list for segmentation, two-step model building could take all the 

target covariates in its model. If we would consider 40% (16) instead of 
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30% (12) of the covariates as a short list, the required time would be 

multiplied by 
212

216

122

162




 or 28.44 to run a simulation.  

Applications to real data 

In this section, two real-data examples are used to compare the 

performance of one-step and two-step model building procedures. 

Brain-Computer Interface (BCI) Data: This data set was used in the BCI 

competition III (data set V). It represents time series of 

electroencephalogram (EEG) signal readings. We consider 

train_subject01_psd04 data set which consists of 3488n  data points. 

There are 97 variables in the data: The first 96 are continuous variables and 

the last one a numerical level. We consider the first 31 variables in our 

analysis, and use the second variable as the response. Thus, there are 30 

covariates and one response in the selected data. RBEw (with 
90.0F  as the 

deletion criterion) applied to this data set (including outliers) selected the 

following model of 15 covariates:  

2  1  3  4 29 12 26 23  6 11 20 19 17 14 21 

We fitted the selected model using the training data, and then used them to 

predict the test data outcomes. The 5% (10%) trimmed MSPE is 

0.000042(0.000033). 

Again, RBEw applied to this data set (including outliers) produced the 

sequence (2  1  3  4 29 12 26 23  6 11 20 19 17 14 21  5 24  9 15 10 18 13 

27  7  8 25 30 16 22 28). We used this sequence and fitted Least Median 

Squares regression to obtained robust 2R  values [11]. Figure 1 shows the 

learning curve for the BCI data based on the above sequence. 

This plot suggests a short list which includes the covariates (2 1 3 4 29 12 

26). The short lists will be used in the segmentation step to build up the 

final model. We applied robust segmentation five-fold (10% trimmed) CV 

(RCV) method using MM-estimator on the above short list. The covariates 

selected in the final model are (2, 1, 3, 4). We fitted this model using the 

training data, and then used them to predict the test data outcomes. The 5% 

(10%) trimmed MSPE for the model is 0.000041 (0.000033) which is same 
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as one-step model. It is clear that the two-step model building selects vary 

fewer covariates in its model compared to its corresponding one-step 

model building. 

 

Figure 1: Learning curve for BCI data 

Protein data: This data set of 145751n  protein sequences was used for 

KDD-Cup 2004. Each of the 5 blocks corresponds to a native protein, and 

each data-point of a particular block is a candidate homologous protein. 

We considered first 4565n  protein sequences from 5 blocks. The 

number of covariates is .77d  The first 2 are indicator variables 

(variables 1-2), the third is the class (Proteins that are homologous to the 

native sequence are denoted by 1, non-homologous proteins by 0), and rest 

74 are the features variables. The first feature is considered as a target 

variable. Thus, there are 73 covariates. The data were split to get a training 

sample of size 2280n and a test sample of size .2285n  RBEr (with 

90.0F  as the deletion criterion) applied to this data set (including outliers) 

selected the following model of 39 covariates: 

(9, 1, 11, 65, 14,  4, 10, 66, 42, 32, 21, 20, 72, 62, 73, 49, 27, 29, 17, 18, 25,  

50, 51, 43, 47, 48, 33, 61, 60,  7, 16, 63, 68, 71,  3,  2, 69, 67, 57) 
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We fitted the selected model using the training data, and then used them to 

predict the test data outcomes. The 5% (10%) trimmed MSPE is 100.1 

(86.5). 

Again, RBEr applied to this data set (including outliers) and the resulting 

learning curve (for first 30 variable of the sequence) is shown in Figure 2. 

 

Figure 2: Learning curve for protein data 

This plot suggests a very short list of at most size 8 which includes the 

covariates 

(9, 1, 11, 65, 14, 4, 10, 66). 

Using five-fold (10% trimmed) RCV procedure yields the final model with 

seven covariates (1, 4, 9, 11, 14, 65, 66). The 5% (10%) trimmed MSPE for 

this model is 101.2 (88.4), which is almost same as MSPE for one-step 

model.  

Limitations 

RBE is resistant to bivariate (correlation) outliers. However, it may be 

sensitive to three or higher-dimensional outliers, that is, outliers that are not 
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detected by univariate and bivariate analyses. Also, the correlation matrix 

obtained from adjusted Wisorized correlation or Spearman’s rank 

correlation approach may not be positive definite, forcing the use of 

correction for positive definiteness in some cases [12]. Though one-step 

model building algorithms construct better models for large data sets, but 

these algorithms don’t guarantee to take all the important covariates in the 

models. They may also select some noise (wrong) covariates in the models. 

From the simulation studies, it is evident that the performance of two-step 

model building procedure is better than one-step model building procedure. 

However, in several occasions, even the proposed two-step procedure 

selects some noise variables in the model in addition to correct variables.  

Conclusion 

BE is a popular and computationally suitable algorithm for building linear 

prediction models. BE has been expressed in terms of Pearson’s product 

moment correlations [6]. The BE is very sensitive when the data contain 

contaminations (gross errors or deviations from normality). Since adjusted 

Winsorized correlation and Spearman’s   are more reliable estimates of 

association in the presence of contaminations in the data, they have been 

introduced in BE. That is, replacing Pearson’s product moment correlations 

by adjusted Winsorized correlations and Spearman’s   in BE algorithm, 

the respective BEw and BEr have been obtained. RBE (BEw or BEr) 

procedure aims to build up a final prediction model as one-step model 

building algorithm using partial F test criteria.  Again, in two-step model 

building, all the covariates have been sequenced by RBE algorithm and a 

short-list has been obtained from learning curve. In the segmentation step, 

computationally suitable robust version of CV (RCV) (evaluation of all 

subset of the short list) has been applied to select the final model. 

According to simulation study and real data application, it is evident that 

the two-step model building procedure performs better than the one-step 

model building procedure.  
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