Curriculum

for

Master of Science (MS) *in* Statistics and Data Science

Sessions: 2023-24, 2024-25, 2025-26, 2026-27

Department of Statistics and Data Science Jahangirnagar University

INTRODUCTION

The Department of Statistics and Data Science (SDS) at Jahangirnagar University is committed to fostering statistical methods in its theoretical, applied, and in scientific research in alignment with the rapidly growing field of data science.

It is one of the four departments with which Jahangirnagar University started its journey in 1970. Initially, it was named as the "Department of Information Science", and it had changed to the "Department of Statistics" later on. In today's age of information, the adoption of new statistical methods and tools has grown enormously. The field of statistics is continuously evolving in response to the remarkable increase in demand for statistical thinking and methodology in scientific research. Keeping this in mind, the department is renamed in 2023 as "Department of Statistics and Data Science".

The department offers BSc (Honors), MS, MPhil, and PhD degrees in Statistics and Data Science. It also offers a Master of Professional Studies (MPS) in Applied Statistics and Data Science (ASDS) under weekend program. Our regular programs cover a broad range of courses focusing on theory, applications, and computation using different statistical software such as Python, R, SPSS, STATA, etc. In addition, research in the department focuses on advanced data science tools and covers several areas such as Data Mining, Machine Learning, Computer Intensive Statistics, Big Data, Spatial Data Analysis, Data Analytics, Meta-analysis, Biostatistics, Bioinformatics, Epidemiology, Demography, Design of Experiment, Time Series Modelling, Econometrics, Advance Statistical Modelling, etc.

The faculty members are well-experienced and well-known in their own field of research at home and abroad. In terms of number of students, faculty members, and facilities available in the department, it is now one of the best departments in the country.

It regularly updates its courses, which opens the window of opportunity for our students to get acquainted with the recent developments in the field and become able to implement the knowledge in their professional lives. We are very proud of our long track record of producing graduates who have become leaders in many areas of scientific and human endeavor. Many of them are working in diversified organizations both at home and abroad with a reputation. The percentage of graduates and their performance in different sectors, especially in the Teaching, Research, Financial Service, and Public Service sectors, are splendid. Some of the former students of the department are working in top-ranked universities around the globe.

It has been publishing a journal entitled "Journal of Statistical Studies" since 1982. The department moves forward with a good pace in order to encompass the state-of-art of

development in statistics and data science globally. The department is well-equipped with computer facilities (with two big computer labs) for the students. The department has a seminar library with approximately 7,500 books and journals in total.

In addition to its core academic program, the department organizes lectures, seminars, and workshops throughout the year. Sports, cultural, and other co-curricular activities are wellorganized, which portray national pride, prejudice, and heritage. Students are also supported with different scholarships available in the department.

Part A

1.	Title of the Academic Program:	MS in Statistics and Data Science
2.	Name of the University:	Jahangirnagar University
3.	Vision of the University:	Promoting and advancing world-class higher education in the University.

4. Mission of the University:

- Mission 1: Creating skilled and trained human resources by providing technologybased education, fostering communication with the outside world, and expanding national and international collaboration and research activities.
- Mission 2: Contributing effectively to the enhancing higher education standards in Bangladesh in alignment with international benchmarks.
- Mission 3: Ensuring quality advanced higher education for all classes of citizens irrespective of religion, caste, creed, and gender.
- 5. Name of the Program Offering Entity: Department of Statistics and Data Science.

6. VISION of the Program Offering Entity

Establish the department as a center for excellence in Statistics and data science through evidence-based education, scientific research and IT-based practice to address emerging global challenges.

7. MISSION of the Program Offering Entity

M1	Provide in-depth knowledge on statistical theories and data science techniques		
	to the students so that they add value to the existing knowledge of Statistics and Data Science.		
M2	Promote creative and critical thinking among students, enabling them to develop statistical theories and data science techniques and apply them in their professional lives.		
M3	Deliver through high-quality teaching-learning process the richness of multidisciplinary knowledge and skills so that the students can be prepared with modern techniques to serve the needs of the country.		

8. Objectives of the Program Offering Entity

- 1. To equip students with cutting-edge knowledge of statistics and data science to develop their skills, particularly with computer intensiveness.
- 2. To foster specializing in advanced statistical and data science techniques to apply in scientific research aspects of the modern age and improve their employability in national and worldwide job markets.
- 3. To enhance leadership skills in the domains of statistics and data science, integrating analytical ability with ethics, collaboration, and communication, aiming to provide value-added insights on a global scale.
- 9. Name of the Degree: MS in Statistics and Data Science

10. Description of the Program:

The Department of Statistics and Data Science, JU adopts the following program structure for its master's degree:

- Master's by Coursework: Master's by Coursework involves taught courses of 41 credits. The duration at this level will be one academic year of full-time study and comprises 2 semesters.
- Master's by Mixed Mode: A Mixed-mode Master's involves 41 credits taught component and a research component involving a thesis/dissertation of 4 credits. A total of 45 credits. The duration at this level will be one and a half academic years of full-time study and comprises 3 semesters.

11. Graduate Attributes:

The attitudes of the graduates of the Department are aligned with the goals of outcomebased education, which intends to prepare its graduates not only with knowledge in Statistics and Data Science but also with the skills and attitudes necessary for success in various aspects of life. The following are the anticipated characteristics that graduates at the Department of Statistics and Data Science might cultivate under the outcome-based education framework:

- Critical thinking and problem-solving: Graduates should develop the ability to analyze information critically and think independently to solve challenges with a logical and analytical mindset using different programming languages and statistical tools.
- Effective communication skills: Graduates should be capable of expressing ideas clearly, both in written and oral forms, and be able to communicate with diverse audiences through meaningful dialogue.
- Teamwork, collaboration, and Timeliness: Graduates are expected to collaboratively work in group settings, demonstrating the timely execution often demanded in professional environments.

- Adaptability and lifelong learning: Graduates should be open to acquiring new knowledge, skills, and attitudes throughout their careers to continuously update their competencies in response to evolving professional and societal demands.
- Ethical and social responsibility: Graduates are expected to demonstrate ethical decision-making, integrity, and a sense of responsibility towards their communities. They should understand the societal implications of their actions and contribute positively to the well-being of society.

12. Program Education C	Objectives (PEO)
-------------------------	-------------------------

PEO1	To impart comprehensive academic and practical literacy in statistics, data		
	science, and related fields.		
PEO2	To promote lateral thinking by way of enabling the students to come out with		
	simple solutions for complex statistical and data science problems that support		
	critical analysis and decision-making process.		
PEO3	To facilitate modern tools and techniques used in statistics and data science		
	required for conducting scientific research and preparing them for employment.		
PEO4	To foster innovative thinking for understanding not only how to apply certain		
	methods, but when and why they are appropriate.		
PEO5	To incorporate ethics and develop leadership skills, teamwork with effective		
	communication, and time management so that they add value at the global		
	arena.		

13. Program Learning Outcome (PLO)

PLO1	Students will learn the fundamentals of statistics and data science with
	applications.
PLO2	Students will be equipped with probability theory and will perform statistical
	inference in several circumstances, interpreting the results in an applied
	context.
PLO3	Students will create different quantitative and qualitative models to solve
	real-world problems in appropriate contexts.
PLO4	Students will apply statistical software packages, languages, and algorithms
	to process and analyze data appropriately.
PLO5	Students will design, carry out, and disseminate original research at the
	leading edge of statistics and data science discipline.

14. Mapping MISSION with PEOs

PEOs	Mission 1	Mission 2	Mission 3
PEO1	3	3	1
PEO2	2	3	3
PEO3	2	3	3
PEO4	2	3	2
PEO5	1	2	3

Degree of strength: 3 – High; 2 – Medium; 1 – Low

15. Mapping PLOs with PEOs

PLO/PEO	PEO1	PEO2	PEO3	PEO4	PEO5
PLO1	3	3	3	2	1
PLO2	3	2	3	3	1
PLO3	3	2	3	3	2
PLO4	2	2	3	3	3
PLO5	1	3	3	3	3

Degree of strength: 3 – High; 2 – Medium; 1 – Low

Formulation of Course Code:

Each course contains a 4-digit subject code followed by a 4-digit course code.

- The subject code is taken from the 'International Standard Classification of Education' published by UNESCO Institute for Statistics. In the document, the subject code for Statistics is 0542, for Mathematics is 0541, for ICT courses is 0610, for Health-related courses is 0988, for Environment is 0521, etc.
- Following the subject code, each course contains a 4-digit course code. The first digit represents the year, the second digit is used for the semester number, and the last two digits represent the course serial number.

Example: The course code **0542-5101** represents the first Statistical and Data Science course of Semester 1 of Year 5.

Part B

1. Structure of the Curriculum

Duration:	By Coursework:	Years: 1.0	Semesters: 2
	By Mixed Mode:	Years: 1.5	Semesters: 3
Admission requirement: Credit requirement:	Based on JU Admissi By Coursework:		e. 41 credits
	By Mixed Mode (Dis	sertation):	45 credits
	Admission requirement:	Admission requirement:Based on JU AdmissionCredit requirement:By Coursework:	Admission requirement:Based on JU Admission Ordinance

- d. Total class-weeks in a semester: 14 weeks
- e. Minimum CGPA requirements for post-graduation: CGPA 2.50 on a scale of 4.0
- f. Max academic years of completion: Course work: 2 years; Mixed-Mode: 2.5 years
- g. Category of Courses:

By Coursework

SI. #	Course category	Description	Туре	Number of courses	Total credits
1	Core courses	Include courses that characterize	Theory	4	4×3 = 12
		Include courses that characterize The discipline LA Include courses for specialization The discipline LA	LAB	4	4×1 = 4
2	Elective courses	Include courses for specialization	Theory	ory 6 6×3 = 1	6×3 = 18
_		within Statistics and Data Science	LAB	6	6×1 = 6
3	Viva voce	Viva	-	1	1×1 = 1
Total	Total Credit		-	-	41

By Mixed Mode with Dissertation

SI. #	Course category	Description	Туре	Number of courses	Total credits
1	Core courses	Include courses that characterize	Theory	4	4×3 = 12
		the discipline	LAB	4	4×1 = 4
2	2 Elective courses Include courses for spe	Include courses for specialization	Theory	6	6×3 = 18
_		within Statistics and Data Science	LAB	6	6×1 = 6
3	Capstone course	Thesis/Dissertation	-	1	1×4 = 4
5	Viva voce	Viva	-	1	1×1 = 1
Total	Total Credit		-	-	45

h. Year & Semester wise distribution of courses:

By Coursework (duration 1 year)

Course Code	Course Title	Course Type	Credit		
0542-5101	Advanced Multivariate Analysis	CORE	3		
0542-5102	Big Data Analytics	CORE	3		
Optional 1	From list of optional courses	Elective	3		
Optional 2	From list of optional courses	Elective	3		
Optional 3	From list of optional courses	Elective	3		
LAB 1	LAB related to 0542-5101	LAB	1		
LAB 2	LAB related to 0542-5102	LAB	1		
LAB 3	LAB related to Optional 1	LAB	1		
LAB 4	LAB related to Optional 2	LAB	1		
LAB 5	LAB related to Optional 3	LAB	1		
	Total credit		20		

Year 5: Semester 1

Optional course for Semester 1:

Course Code	Course Title	Course Type	Credit
0542-5111	Longitudinal Data Analysis	Elective	3
0542-5112	Advanced Categorical Data Analysis	Elective	3
0542-5113	Advanced Time-series Analysis	Elective	3
0542-5114	Meta Analysis	Elective	3
0542-5115	Spatial Data Analysis	Elective	3
0610-5116	Computer Intensive Statistics	Elective	3
0610-5117	Bioinformatics and Genetic Algorithm	Elective	3
0314-5118	Advanced Demography and Population Studies	Elective	3
0532-5119	Remote Sensing and GIS	Elective	3
0521-5120	Environmental Statistics and Modeling	Elective	3

Course Code	Course Title	Course Type	Credit
0542-5121	LAB - Advanced Multivariate Analysis	LAB	1
0542-5122	LAB - Big Data Analytics	LAB	1
0542-5123	LAB - Longitudinal Data Analysis	LAB	1
0542-5124	LAB - Advanced Categorical Data Analysis	LAB	1
0542-5125	LAB - Advanced Time-series Analysis	LAB	1
0542-5126	LAB - Meta Analysis	LAB	1
0542-5127	LAB - Spatial Data Analysis	LAB	1
0610-5128	LAB - Computer Intensive Statistics	LAB	1
0610-5129	LAB - Bioinformatics and Genetic Algorithm	LAB	1
0314-5130	LAB - Population Studies	LAB	1
0532-5131	LAB - Remote Sensing and GIS	LAB	1
0521-5132	LAB - Environmental Statistics and Modeling	LAB	1

Year 5: Semester 2

Course Code	Course Title	Course Type	Credit	
0542-5201	Advanced Classical and Bayesian Inference	CORE	3	
0610-5202	Deep Learning	CORE	3	
Optional 1	From list of optional courses	Elective	3	
Optional 2	From list of optional courses	Elective	3	
Optional 3	From list of optional courses	Elective	3	
LAB 1	LAB related to 0542-5201	LAB	1	
LAB 2	LAB related to 0610-5202	LAB	1	
LAB 3	LAB related to Optional 1	LAB	1	
LAB 4	LAB related to Optional 2	LAB	1	
LAB 5	LAB related to Optional 3	LAB	1	
0542-5200	Viva-Voce	Viva	1	
	Total credit			

Optional for Semester 2:

Course Code	Course Title	Course Type	Credit
0542-5211	Incomplete Data Analysis	Elective	3
0542-5212	Robust Statistics	Elective	3
0542-5213	Semiparametric Regression	Elective	3
0542-5214	Applied Stochastic Process and Stochastic Simulation	Elective	3
0542-5215	Advanced Design of Experiments	Elective	3
0542-5216	Multivariate and Clustered Survival Data Analysis	Elective	3
0610-5217	Advanced Data Visualization	Elective	3
0610-5218	Artificial Intelligence	Elective	3
0912-5219	Epidemiological Modelling for Public Health	Elective	3

Course Code	Course Title	Course Type	Credit
0542-5221	LAB - Advanced Classical and Bayesian Inference	LAB	1
0610-5222	LAB - Deep Learning	LAB	1
0542-5223	LAB - Incomplete Data Analysis	LAB	1
0542-5224	LAB - Robust Statistics	LAB	1
0542-5225	LAB - Semiparametric Regression	LAB	1
0542-5226	LAB - Applied Stochastic Process and Stochastic Simulation	LAB	1
0542-5227	LAB - Advanced Design of Experiment	LAB	1
0542-5228	LAB - Multivariate and Clustered Survival Data Analysis	LAB	1
0610-5229	LAB - Advanced Data Visualization	LAB	1
0610-5230	LAB - Artificial Intelligence	LAB	1
0912-5231	LAB - Epidemiological Modelling for Public Health	LAB	1

By Mixed Mode with Dissertation (duration 1.5 year)

Year 5: Semester 1

Course Code	Course Title	Course Type	Credit
0542-5101	Advanced Multivariate Analysis	CORE	3
0542-5102	Big Data Analytics	CORE	3
Optional 1	From list of optional courses	Elective	3
Optional 2	From list of optional courses	Elective	3
Optional 3	From list of optional courses	Elective	3
LAB 1	LAB related to 0542-5101	LAB	1
LAB 2	LAB related to 0542-5102	LAB	1
LAB 3	LAB related to Optional 1	LAB	1
LAB 4	LAB related to Optional 2	LAB	1
LAB 5	LAB related to Optional 3	LAB	1
Total credit			

Optional course for Semester 1:

Course Code	Course Title	Course Type	Credit
0542-5111	Longitudinal Data Analysis	Elective	3
0542-5112	Advanced Categorical Data Analysis	Elective	3
0542-5113	Advanced Time-series Analysis	Elective	3
0542-5114	Meta Analysis	Elective	3
0542-5115	Spatial Data Analysis	Elective	3
0610-5116	Computer Intensive Statistics	Elective	3
0610-5117	Bioinformatics and Genetic Algorithm	Elective	3
0314-5118	Advanced Demography and Population Studies	Elective	3
0532-5119	Remote Sensing and GIS	Elective	3
0521-5120	Environmental Statistics and Modeling	Elective	3

Course Code	Course Title	Course Type	Credit
0542-5121	LAB - Advanced Multivariate Analysis	LAB	1
0542-5122	LAB - Big Data Analytics	LAB	1
0542-5123	LAB - Longitudinal Data Analysis	LAB	1
0542-5124	LAB - Advanced Categorical Data Analysis	LAB	1
0542-5125	LAB - Advanced Time-series Analysis	LAB	1
0542-5126	LAB - Meta Analysis	LAB	1
0542-5127	LAB - Spatial Data Analysis	LAB	1
0610-5128	LAB - Computer Intensive Statistics	LAB	1
0610-5129	LAB - Bioinformatics and Genetic Algorithm	LAB	1
0314-5130	LAB - Population Studies	LAB	1
0532-5131	LAB - Remote Sensing and GIS	LAB	1
0521-5132	LAB - Environmental Statistics and Modeling	LAB	1

Year 5: Semester 2

Course Code	Course Title	Course Type	Credit	
0542-5201	Advanced Classical and Bayesian Inference	CORE	3	
0610-5202	Deep Learning	CORE	3	
Optional 1	From list of optional courses	Elective	3	
Optional 2	From list of optional courses	Elective	3	
Optional 3	From list of optional courses	Elective	3	
LAB 1	LAB related to 0542-5201	LAB	1	
LAB 2	LAB related to 0610-5202	LAB	1	
LAB 3	LAB related to Optional 1	LAB	1	
LAB 4	LAB related to Optional 2	LAB	1	
LAB 5	LAB related to Optional 3	LAB	1	
0542-5200	Viva-Voce	Viva	1	
	Total credit			

Optional for Semester 2:

Course Code	Course Title	Course Type	Credit
0542-5211	Incomplete Data Analysis	Elective	3
0542-5212	Robust Statistics	Elective	3
0542-5213	Semiparametric Regression	Elective	3
0542-5214	Applied Stochastic Process and Stochastic Simulation	Elective	3
0542-5215	Advanced Design of Experiments	Elective	3
0542-5216	Multivariate and Clustered Survival Data Analysis	Elective	3
0610-5217	Advanced Data Visualization	Elective	3
0610-5218	Artificial Intelligence	Elective	3
0912-5219	Epidemiological Modelling for Public Health	Elective	3

Course Code	Course Title	Course Type	Credit
0542-5221	LAB - Advanced Classical and Bayesian Inference	LAB	1
0610-5222	LAB - Deep Learning	LAB	1
0542-5223	LAB - Incomplete Data Analysis	LAB	1
0542-5224	LAB - Robust Statistics	LAB	1
0542-5225	LAB - Semiparametric Regression	LAB	1
0542-5226	LAB - Applied Stochastic Process and Stochastic Simulation	LAB	1
0542-5227	LAB - Advanced Design of Experiments	LAB	1
0542-5228	LAB - Multivariate and Clustered Survival Data Analysis	LAB	1
0610-5229	LAB - Advanced Data Visualization	LAB	1
0610-5230	LAB - Artificial Intelligence	LAB	1
0912-5231	LAB - Epidemiological Modelling for Public Health	LAB	1

Year 6: Semester 1

Thesis group students must complete their dissertation in the first semester of the second year. Therefore, for Thesis group students, it takes 3 semesters (1.5 years) to complete the Master of Science in Statistics and Data Science.

Course Code	Course Title	Course Type	Credit
0542-6101	Dissertation	Capstone/	4
0542-0101	(Evaluation of Thesis – 70% & Oral presentation – 30%)	Thesis	4
	Total credit		4

Modalities:

The selected students will complete the Thesis work under the supervision of a supervisor assigned by the Department. The Thesis supervisors will be assigned at the beginning of the 1st semester of year 5. The Thesis group students will be selected by the respective Examination Committee of the Department as per the set criteria by the Department/ University.

Assessment:

The Thesis will be evaluated as per the following criteria:

- Evaluation of Thesis 70%
- Oral presentation 30%

Part C Description of Courses

Year 5: Semester 1

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5101	Advanced Multivariate Analysis	CORE	Value: 3.0	100

1. Rationale of the Course:

This course is designed to provide students with an in-depth understanding of sophisticated statistical techniques that are essential for analyzing complex data sets and drawing meaningful conclusions. The course also emphasizes the application of multivariate techniques in various domains, fostering critical thinking and enhancing problem-solving abilities among students.

2. Course Objectives:

Advanced Multivariate Analysis is designed to develop a comprehensive understanding of complex statistical techniques and their applications. The major objectives of this course include:

- To gain a deep understanding of a wide range of multivariate analysis techniques.
- To develop the skills to analyze and interpret high-dimensional data sets.
- To apply advanced multivariate analysis techniques to real-world problems.
- To develop critical thinking skills to assess the validity and reliability of multivariate analysis results.

PLO1 PLO2 PLO3 PLO4 PLO5 **CLOs** 1. Students should be able to gain proficiency in a 2 3 3 3 1 advanced multivariate range of analysis techniques. 2. Students should be able to interpret complex 3 3 2 2 1 multivariate analysis results effectively. 3. Students should be able to visualize and present 2 3 3 2 2 multivariate data utilizing graphical techniques. 4. Students should be able to apply advanced 2 2 3 1 3 multivariate analysis techniques to real-world problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

Week	Topic	Teaching-	Corresponding
WEEK	Topic	Learning	CLOs
		Strategy	CLUS
1-2	Multivariate Multiple Regression: Meaning, Functional	Classroom	2, 3
	form and Underlying Assumptions. Likelihood Ratio Test	Lecture	2, 3
	for Regression Parameters, Predicting Multivariate	and	
	Multiple Regression, Confidence Ellipse and Prediction	Discussion	
	Ellipse from Bivariate Responses.	Discussion	
3-4	Multilevel Modeling: Conceptual Framework of	Classroom	1, 2
	Multilevel Modeling, Hierarchically Structured Data,	Lecture	,
	Analytical Problems with Multilevel Data, Advantages	and	
	and Limitations of Multilevel Modeling.	Discussion	
5-6	Linear Multilevel Models: Concept of Fixed, Mixed and	Classroom	1, 2
	Random Effect Multilevel Mode, Constructing	Lecture	_, _
	Multilevel Models, Assumptions, Formulations and	and	
	Estimation of Two-Level and Three-Level Models, Fixed	Discussion	
	and Random Coefficients, Cross Level Interactions,		
	Measurement Centering, Hypothesis Testing, Model		
	Comparison, Level 1 and Level 2 Variances.		
7-8	Mixed Models: Multivariate Probit Model, the Dale	Classroom	1, 2
	Model, Hybrid Marginal-conditional Specification,	Lecture	
	Mixed Marginal-conditional Model, Categorical	and	
	Outcomes, Marginal Multivariate Model, Linear Mixed	Discussion	
	Model, Estimation and Inference for the Marginal		
	Model, Inference for the Random Effects, Model		
	Families in General, generalized linear mixed models,		
	generalized estimation equation, alternating logistic		
0.10	regression.	Classica	1 2 4
9-10	Analysis of Covariance Structure: Covariance Structure,		1, 2, 4
	Hypotheses about Covariance Structure, Model of	Lecture	
	Covariance Structure Analysis, Scope of Covariance Structural Analysis, Illustration of Likelihood Ratio Test,	and Discussion	
	Tests of Covariance Structure Based on Union-	DISCUSSION	
	Intersection Principle, Structural Analysis		
11-12	Generalized Estimating Equations (GEE): Define GEE.	Classroom	1,2 ,4
** **	GEE as an extends of GLM. Correlation structures (e.g.,	Lecture	±,
	exchangeable, autoregressive, unstructured) and their	and	
	implications. Estimating model parameters using the	Discussion	
	GEE approach. Interpreting estimated coefficients and		
	their significance. Adequacy of the GEE model. Methods		
	for identifying influential observations and outliers.		

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
13-14	Independent Component Analysis (ICA): Basic Concept	Classroom	3, 4
	on ICA. Identifiability of the ICA Model, Ambiguities of	Lecture	
	ICA, preprocessing for ICA, Principles of ICA Estimation:	and	
	Maximization of Non-Gaussianity Using Kurtosis and	Discussion	
	Negentropy, Minimization of Mutual Information,		
	Maximum Likelihood Estimation. Image Processing		
	using ICA.		

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations, and
CLO-4		Semester end examination.

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Jonhnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, 6th Edition, Pearson, London, UK.
- ii. Anderson, T. W. (2003). Introduction to Multivariate Analysis, 3rd Edition, John Wiley, New York.

- i. Afifi, A., May, S., Donatello, R., & Clark, V. A. (2019). Practical multivariate analysis. Chapman and Hall/CRC.
- ii. Izenman, A. J. (2008). Modern Multivariate Statistical Techniques, Regression, Classification and Manifold Learning, Springer-Verlag, Newwork.
- iii. Finch, W. Holmes, Bolin, Jocelyn E., & Kelley, Ken. (2019). Multilevel Modeling Using R, 2nd Edition, CRC Press.
- iv. Hyvarinen, A. Karunen, J. and Oja, E. (2001). Independent Component Analysis, New York: Wiley.
- v. Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariate analysis with R. Springer Science & Business Media.

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5102	Big Data Analytics	CORE	Value: 3.0	100

1. Rationale of the Course:

This course aims to equip students with essential knowledge and skills in handling large and complex datasets, which are becoming increasingly crucial in today's data-driven world. By understanding the fundamentals of Big Data, its technologies, and applications, students will be prepared to navigate and leverage data effectively in various domains. This course addresses the growing demand for professionals who can harness the power of Big Data to make informed decisions, solve real-world problems, and drive innovation across industries.

2. Course Objectives:

The specific objectives of this course included:

- To gain an understanding of the concept of Big Data and its relevance in today's datadriven world.
- To define the key features and characteristics that distinguish Big Data from traditional data.
- To explore the value and potential benefits of utilizing Big Data in various industries and sectors.
- To investigate the historical development of Big Data and the challenges it has faced throughout its evolution.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
	1 601	1 602	1 605	1 604	1 205
1. Students will be able to understand the definition,					
features, value, development, and challenges of	3	3	2	1	2
Big Data.					
2. Students will be able to demonstrate proficiency in					
using Big Data technologies like Hadoop, Spark,	3	3	2	3	3
and IoT.					
3. Students will be able to effectively manage and	2	3	3	2	2
process data, including real-time analytics.	2	5	0	Z	Z
4. Students will be able to master data integration,					
workflow management, and data governance	1	2	3	3	2
practices.					
5. Students will be able to explore advanced solutions					
such as cloud-based platforms, deep learning, and	1	1	3	3	3
ethical considerations in Big Data projects.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

Week	Торіс	Teaching-	Correspo
		Learning	nding
		Strategy	CLOs
1	Introduction of Big Data: Dawn of the Big Data Era,	Classroom	1
	Definition and Features of Big Data, Big Data Value, the	Lecture and	
	Development and Challenges of Big Data,	Discussion	
2	Big Data Related Technologies: Cloud Computing,	Classroom	1, 2
	Relationship between Cloud Computing and Big, IoT,	Lecture and	
	Relationship between IoT and Big Data, Data Center,	Discussion	
	Hadoop, Relationship between Hadoop, and Big Data.		
3-4	Hadoop Ecosystem: Hadoop Distributed File System	Classroom	1, 2
	(HDFS), MapReduce programming model and examples,	Lecture and	
	Introduction to Apache Hive for data warehousing,	Discussion	
	Introduction to Apache Pig for data flow scripting, Apache		
	HBase for NoSQL database, Apache Spark overview		
5-6	Data Storage and Management: Introduction to	Classroom	1, 3
	distributed databases, Apache Cassandra for distributed	Lecture and	
	database management, MongoDB for NoSQL data	Discussion	
	storage, Data Warehousing and Business Intelligence,		
	Introduction to Apache Flink, Data lakes and their role in		
	Big Data		
7-8	Data Processing and Analysis: Apache Spark		2, 3
	fundamentals, Spark RDDs (Resilient Distributed	Lecture and	
	Datasets), Spark SQL and Data Frames, Machine Learning	Discussion	
	with Apache Spark, Introduction to Spark MLlib, Spark		
	Streaming for real-time data processing.		
9-10	Data Integration and Workflow: Apache NiFi for data	Classroom	3, 4
	integration, Apache Airflow for workflow management,	Lecture and	
	Introduction to Apache Kafka, Kafka for real-time event	Discussion	
	streaming, Integration of data pipelines, Data governance		
	and security in Big Data	0	
11	Big Data Processing: Big Data in the cloud (AWS, Azure,	Classroom	3, 5
	GCP), Serverless computing for Big Data, Advanced	Lecture and	
	analytics and visualization, Graph processing with Apache	Discussion	
	Giraph, Ethical Considerations in Big Data		
12-13	Deep Learning in Big Data: Introduction to deep learning	Classroom	3, 4
	architectures (CNNs, RNNs, GANs), Deep learning	Lecture and	
	frameworks for big data (TensorFlow, PyTorch, Keras),	Discussion	
	Transfer learning and fine-tuning on large datasets		

Week	Торіс	Teaching-	Correspo
		Learning	nding
		Strategy	CLOs
14	Real-time Analytics and Complex Event Processing:	Classroom	3, 5
	Stream processing architectures, Apache Flink and its	Lecture and	
	applications in real-time analytics, Handling complex	Discussion	
	events and patterns in streaming data.		

CLOs	Teaching-Learning Strategy		Assessment Strategy
CLO-1	Classroom Lecture, Interactive Gro	bup	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation		Assignments, Class tests and
CLO-3			performance, Presentations,
CLO-4			and Semester end
CLO-5			examination.

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Chen, M., Mao, S., Zhang, Y., & Leung, V.C.M. (2014). Big Data: Related Technologies, Challenges and Future Prospects, Springer.
- ii. Hrushikesha. M., Prachet. B., and Deepak. C., (2015). Big Data: A Primer, Springer.

- i. Zikopoulos, P.C., Eaton, C., Deroos, D., Deutsch, T., & Lapis, G. (2012). Understanding Big Data, McGraw Hill, New York.
- ii. Baesens, B. (2014). Analytics in a Big Data World: The Essential Guide to Data Science and its Applications, Wiley.
- iii. Li, K. C., Jiang, H., & Zomaya, A. Y. (Eds.). (2017). Big data management and processing. CRC Press.

Optional Courses for Semester 1:

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5111	Longitudinal Data Analysis	Elective	3.0	100

1. Rationale of the Course:

This course is designed to equip students with the necessary skills and knowledge to analyze and interpret data collected over time. Longitudinal data is prevalent in various fields, such as healthcare, social sciences, and economics, and offers insights into changes and trends that cannot be captured by cross-sectional data analysis alone. This course aims to enable them to conduct research and make informed decisions in their respective fields.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of probability theory and its applications. The specific objectives include:

- To develop a comprehensive understanding of longitudinal data, and the relevance of analyzing data over time.
- To introduce students to statistical models and techniques specifically designed for analyzing longitudinal data.
- To equip students with advanced analytical skills required to interpret and draw meaningful conclusions from longitudinal data.
- To provide practical experience in analyzing real-world longitudinal datasets and translating the findings into actionable insights.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to explain the fundamental	ſ	3	3	1	2
characteristics of longitudinal data and its significance in various fields.	3	5	5	1	Z
2. Students will be able to apply appropriate statistical models to analyze longitudinal data.	3	3	2	3	2
3. Students will be able to perform advanced data analysis techniques, including the assessment of random effects covariance structures and diagnostic checks for model validation.	2	3	3	3	2
4. Students will be able to identify missing data patterns, choose suitable imputation procedures.	1	2	3	3	2
5. Students will be able to analyze real-world longitudinal datasets, interpret the results.	1	2	2	3	3

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1-2	Longitudinal data: Concepts, examples, objectives of	Classroom	1
	analysis, problems related to one sample and multiple	Lecture and	
	samples, Sources of correlation in longitudinal data,	Discussion	
	exploring longitudinal data.		
3	Linear model for longitudinal data: Introduction,	Classroom	1
	notation, and distributional assumptions, simple	Lecture and	
	descriptive methods of analysis.	Discussion	
4-5	ANOVA for longitudinal data: Fundamental model,	Classroom	2
	one sample model, Sphericity condition; multiple	Lecture and	
	sample models.	Discussion	
6-7	Linear mixed effects models: Introduction, random	Classroom	2
	effects covariance structure, prediction of random	Lecture and	
	effects, residual analysis, and diagnostics.	Discussion	
8-9	Extension of GLM for longitudinal data: Review of	Classroom	3
	generalized linear models, quasi-likelihood, marginal	Lecture and	
	models, random effects models, transition models,	Discussion	
	comparison between these approaches; the GEE		
	methods, GEE1 and GEE2.		
10	Generalized Linear Mixed Models (GLMM):	Classroom	3, 5
	Introduction, estimation procedures: Laplace	Lecture and	
	transformation; Penalized Quasi Likelihood (PQL);	Discussion	
	Marginal Quazi Likelihood (MQL);		
11	Numerical integration: Gaussian quadrature,	Classroom	3, 5
	Adaptive Gaussian quadrature, Monte Carlo	Lecture and	
	Integration; Markov Chain Monte Carlo sampling;	Discussion	
	comparison between these methods.		
12	Statistical analysis with missing data: Missing data,	Classroom	4, 5
	missing data pattern, missing data mechanism,	Lecture and	
	imputation procedures, mean imputation, hot deck	Discussion	
	imputation.		
13	Estimation of sampling variance in the presence of	Classroom	4, 5
	non-response, likelihood-based estimation, and tests	Lecture and	
	for both complete and incomplete cases,	Discussion	
14	Regression models with missing covariate values,	Classroom	4, 5
	applications for longitudinal data.	Lecture and	
		Discussion	

CLOs	Teaching-Learning Strategy		Assessment Strategy
CLO-1	Classroom Lecture, Interactive G	Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation		Assignments, Class tests and
CLO-3			performance, Presentations,
CLO-4			and Semester end
CLO-5			examination.

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

i. Verbeke, G. & Molenberghs, G. (2000). Linear Mixed Model for Longitudinal Data, Springer.

- i. Molenberghs, G. & Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York: Springer-Verlag.
- ii. Diggle, P.J., Heagerty, P., Liang, K.-Y., & Zeger, S.L. (2002). Analysis of Longitudinal Data, 2nd edition. Oxford.
- iii. Faraway, J. J. (2016). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall/CRC.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5112	Advanced Categorical Data	Elective	3.0	100
	Analysis			

1. Rationale of the Course:

This course aims to provide students with a deeper understanding of complex statistical methods and models tailored for categorical data. Categorical data are prevalent in various fields, including social sciences, healthcare, and marketing research. This course addresses the growing need for professionals who can navigate and effectively analyze categorical data, enabling them to uncover valuable insights and contribute to evidence-based decision-making.

2. Course Objectives:

The course aims to equip students with an in-depth understanding of advanced categorical data analysis techniques. Specific objectives include:

- To enhance students' expertise in analyzing and interpreting categorical data using advanced statistical methodologies.
- To empower students with the capability to apply advanced categorical data analysis techniques to address complex real-world challenges.
- To cultivate students' ability to conduct research and apply advanced categorical data analysis methods.
- To enable students to proficiently perform statistical inference and effectively interpret models.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to understand specialized					
models, including polytomous logistic regression,	3	3	3	1	1
conditional logistic regression, ALR, GAM, etc.					
2. Students will be able to apply advanced categorical					
data analysis to real-world problems, effectively	2	3	3	3	2
interpret results, and provide practical solutions.					
3. Students will be able to conduct research projects					
using advanced categorical data analysis,	1	1	2	3	3
contributing to evidence-based decision-making.					
4. Students will be able to expertly interpret complex	1	2	3	3	3
models, identify key factors influencing outcomes.	Ţ	Z	5	5	5

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Advanced Logistic Regression: Polytomous logistic	Classroom	1
	regression, Conditional logistic regression, Logistic	Lecture and	
	regression with complex survey data.	Discussion	
2-3	Alternating Logistic Regression (ALR): Brief	Classroom	1, 3, 4
	overview of categorical data. Motivation for using	Lecture and	
	Alternating Logistic Regression. ALR model	Discussion	
	equation. Parameters estimations and link		
	functions in the ALR framework.		
4-5	ALR in Longitudinal Data: Applying ALR to analyze	Classroom	1, 3, 4
	longitudinal ordinal data. Addressing challenges	Lecture and	
	related to repeated measures.	Discussion	
6-7	Generalized Additive Model (GAM): Concept of	Classroom	1, 3, 4
	flexible models. Formulation of the GAM equation.	Lecture and	
	Interpretation of smooth terms and parametric	Discussion	
	terms. Introduction to various smoothing		
	functions. Choice of smoothing functions.		
8-9	Latent Class Analysis and Finite Mixture Models:	Classroom	1, 3, 4
	Latent class models for categorical data clustering,	Lecture and	
	Finite mixture models for heterogeneous	Discussion	
	populations, Model selection, and assessment of		
	fit.		
10	Discuss extensions of GEE: Extensions of GEE such	Classroom	3, 4
	as weighted GEE and robust GEE, marginal models,	Lecture and	
	and model selection strategies.	Discussion	
11-12	Multivariate GEE: Extend GEE to handle	Classroom	3, 4
	multivariate outcomes. Multivariate GEE models.	Lecture and	
		Discussion	
13-14	Bayesian Methods for Categorical Data:	Classroom	2, 4
	Introduction to Bayesian inference for categorical	Lecture and	
	data, Markov Chain Monte Carlo (MCMC) methods	Discussion	
	for complex models, and Hierarchical models for		
	multi-level categorical data.		

CLOs	Teaching-Learning Strategy	Assessment Strategy		
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,		
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and		
CLO-3		performance, Presentations,		
CLO-4		and Semester end		
		examination.		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Agresti, A. (2012). Categorical Data Analysis, 3rd Edition, Wiley.
- ii. Agresti, A. (2018). An introduction to categorical data analysis. 3rd Edition, Wiley.

- i. Cameron, A.C., & Trivedi, P.K. (2013). Regression Analysis of Count Data, 2nd Edition, Cambridge University Press.
- ii. Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables, Sage Publications.
- iii. Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
- iv. Bilder, C. R., & Loughin, T. M. (2014). Analysis of categorical data with R. CRC Press.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5113	Advanced Time Series Analysis	Elective	3.00	100

1. Rationale of the Course:

This course offers a deep dive into critical techniques like Unit Root Analysis, Cointegration Analysis, and Modeling Volatility, with a focus on parametric and nonparametric methods. It emphasizes understanding the limitations and applicability of various tests through comparative studies. The course also explores advanced topics like ARCH/GARCH processes and non-linear time series models, equipping students with comprehensive skills for analyzing and forecasting economic data.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Advanced Time Series Analysis. The specific objectives include:

- To master key concepts and methods in Unit Root Analysis and Cointegration for effective time series data analysis.
- To develop proficiency in applying ARCH/GARCH models to analyze and forecast economic volatility.
- To cultivate critical thinking skills for evaluating and comparing various time series analysis techniques.
- To gain expertise in non-linear time series models to enhance data analysis and forecasting accuracy in economic and financial contexts.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to apply parametric and					
nonparametric unit root analysis to time series data	3	3	2	1	2
effectively.					
2. Students will be able to proficiently use					
cointegration techniques and ARCH/GARCH models	3	3	2	3	2
for analyzing economic data.					
3. Students will be able to critically evaluate various	2	3	3	2	2
time series analysis methods.	2	5	5	Z	Z
4. Students will be able to employ advanced non-					
linear time series modeling for accurate economic	1	2	3	3	2
forecasting.					
5. Students will be able to apply theoretical concepts					
to practical scenarios in economic and financial data		2	3	3	3
analysis.					

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Unit Root Analysis: Concept of Unit Roots	Classroom	1
	(Parametric and Nonparametric), Dickey-Fuller (DF)	Lecture and	
	Test, Augmented DF Test; DF-GLS (Generalized	Discussion	
	Least Square) Test.		
2	Nonparametric Unit Root Test, Phillips-Perron tests	Classroom	1
	(PP) Tests: Specification of Hypothesis in Unit Root	Lecture and	
	Test.	Discussion	
3-4	Tests with Unit Root as Null and Tests with	Classroom	1
	Stationary as Null, Moving average Unit Root Tests,	Lecture and	
	Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test,	Discussion	
	Leybourne and McCabe (LM) Test, Confirmatory		
	Analysis of Unit Root Tests.		
5-6	Comparative Study: Size Distortion and Low Power	Classroom	1
	of Tests. Different Panel Data Unit Root Tests.	Lecture and	
		Discussion	
7	Cointegration Analysis: Methods of Estimation of	Classroom	3
	Single Equation: Engle-Granger Methods, System	Lecture and	
	Methods: Triangular System, Johansen Procedure	Discussion	
	and Common Trends Representation, Identification		
	Problem in Cointegration System.		
9-10	Cointegration and Granger-Causality: Concept of	Classroom	3
	Multi-cointegration and Polynomial Integration	Lecture and	
	with Examples, Tests for Cointegration of Single	Discussion	
	Equation Residual Based Tests, Multiple Equation		
	Methods.		
11	Modeling Volatility: Economic Time Series, ARCH	Classroom	2, 5
	Processes, ARCH and GARCH Estimates of Inflation,	Lecture and	
	GARCH Model of PPI: Example, GARCH Model Risk,	Discussion	
	ARCH-M Model, Additional Properties of GARCH		
	Processes, IGARCH, EGARCH, GARCH-M, QGARCH,		
	GJR-GARCH, TGARCH model, fGARCH, COGARCH,		
	ZD-GARCH, Spatial GARCH model.		
12	Maximum Likelihood Estimation of GARCH Models,	Classroom	2, 5
	Other Models of Conditional Variance, Estimating	Lecture and	
	NYSE Composite Index.	Discussion	

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
13	Non-Linear Time-Series Models: Linear Versus Non-	Classroom	4, 5
	Linear Adjustment, Simple Extensions of ARIMA	Lecture and	
	Model, Threshold Autoregressive Models,	Discussion	
	Extensions and Other Non-Linear Models,		
14	Testing for Non-Linearity, Estimates of Regime	Classroom	4, 5
	Switching Models, Generalized Impulse Responses	Lecture and	
	and Forecasting, Unit Roots, and Non-Linearity.	Discussion	

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
to	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-5		performance, Presentations, and
		Semester end examination.

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, New Jersey.
- ii. Enders, W. (2004). Applied Econometric Time Series, 2nd Edition, John Wiley and Sons (Asia) Pte. Ltd.

- i. Shumway, R. H., Stoffer, D. S., and Stoffer, D. S. (2000). Time series analysis and its applications. New York: Springer.
- ii. Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. 5th Edition, John Wiley & Sons.
- iii. Wei, W. W. (2018). Multivariate time series analysis and applications. John Wiley & Sons.
- iv. Maddala, G. S. and Kim, I. M. (2008). Unit Roots, Cointegration and Structural Change, Cambridge University Press, Cambridge.
- v. Gersch, W. and Kitagawa, G. (1996). Smoothness Priors of Time Series Analysis, Springer, New York.
- vi. Gourierousx, C. (1997). ARCH Model and Financial Applications, Springer, New York.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5114	Meta Analysis	Elective	3.00	100

1. Rationale of the Course:

Meta-analysis comprises a powerful tool for synthesizing prior research and empirically validating theoretical frameworks. This course offers an in-depth exploration of its techniques, from basic concepts to advanced topics like heterogeneity, meta-regression, and publication bias. It aims to equip learners with the skills to effectively conduct and interpret meta-analyses, addressing both statistical significance and real-world applications.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Meta Analysis. The specific objectives include:

- To gain a solid understanding of the basic concepts, methodologies, and critical assessments involved in meta-analysis.
- To learn how to analyze different types of data, interpret effect sizes, and choose appropriate models for meta-analysis.
- To delve into more complex aspects such as heterogeneity, meta-regression, and power analysis, and their practical applications in research.
- To develop skills to identify and address common challenges in meta-analysis, such as publication bias and the interpretation of complex data scenarios.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be recognizing the appropriate use of					
a fixed effects model vs. a random effects model	3	3	3	1	2
for a meta-analysis.					
2. Students can learn how to describe the rationale					
for a test of heterogeneity among the studies used	3	3	2	3	2
in a meta-analysis.					
3. Students can learn how to describe methods for					
performing a sensitivity analysis of the meta-	2	3	3	2	3
analysis.					
4. Students should be able to recognize patterns in a	1	2	3	3	3
'funnel plot'.	1	Z	5	5	5
5. Students should be able to learn how publication	1	1	1	3	3
bias can affect the results of a systematic review.	1	T	L	5	5

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Introduction: Concept of Meta-Analysis. Strengths,	Classroom	1
	Weaknesses, Criticisms of Meta-Analysis,	Lecture and	
	Statistical Significance, Clinical Importance of	Discussion	
	Effect, Consistency of Effects.		
2	Effect Size and Precision: Treatment Effects and	Classroom	1
	Effect Sizes, Effect Sizes Based on: Binary Data (2×2	Lecture and	
	Tables) and Correlations, converting among Effect	Discussion	
	Sizes, Factors that affect Precision, Relationship		
	between Effect Size and P values.		
3-4	Fixed Effect Model and Random Effect Model:	Classroom	1
	Fixed-Effect vs. Random-Effects Models.	Lecture and	
		Discussion	
5-6	Heterogeneity: Identifying and Quantifying	Classroom	2
	Heterogeneity, Prediction Intervals, Subgroup	Lecture and	
	Analyses,	Discussion	
7-9	Sub-Group Analysis: Meta-Regression: Explanation	Classroom	2, 3
	of meta-regression as an extension of meta-	Lecture and	
	analysis. Purpose and benefits of using meta-	Discussion	
	regression. Formulating a Meta-Regression Model,		
	Selecting potential predictors in meta-regression.		
10-11	Power Analysis for Meta-Analysis: When to use	Classroom	2, 3
	Power Analysis, Planning for Precision rather than	Lecture and	
	for Power, Power Analysis in Primary Studies and	Discussion	
	Meta-Analysis, power Analysis for a Test of		
	Homogeneity.		
12	Publication Bias: Introduction, problem of missing	Classroom	4, 5
	studies, methods for addressing bias, some	Lecture and	
	important caveats, Small-study effects, Funnel plot, Patterns in funnel plot, Narrative reviews vs.	Discussion	
	meta-analyses.		
13	SIMPSON'S Paradox: Overview, relationship	Classroom	4, 5
	between Circumcision and HIV Infection Risk, Case	Lecture and	
	studies Illustrating the Paradox	Discussion	
14	Psychometric Meta-Analysis: The Attenuating	Classroom	4, 5
	Effects of Artifacts, Meta-Analysis Methods,	Lecture and	
	Example of Psychometric Meta-Analysis.	Discussion	

CLOs	Teaching-Learning Strategy	Assessment Strategy			
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,			
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and			
CLO-3		performance, Presentations,			
CLO-4	-	and Semester end			
CLO-5		examination.			

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Borenstein, M., Hedges, L.V., Higgins, J.P.T., & Rothstein, H.R. (2021). Introduction to Meta-Analysis, 2nd Edition, Wiley.
- ii. Harrer, M., Cuijpers, P., Furukawa, T., & Ebert, D. (2021). Doing meta-analysis with R: A hands-on guide. Chapman and Hall/CRC.

- i. Harris, M.C. (2016). Research Synthesis and Meta-Analysis: A Step-By-Step Approach (Applied Social Research Methods), 5th Edition, Sage Publications, Inc.
- ii. Mark, W.L. & David, W. (2000). Practical Meta-Analysis (Applied Social Research Methods), 1st Edition, Sage Publications, Inc.

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5115	Spatial Data Analysis	Elective	Value: 3.0	100

1. Rationale of the Course:

Spatial data analysis is a broad field. This course is considered as a core infrastructure of modern IT world, which is substantiated by business transactions of major IT companies such as Apple, Google, Microsoft, Amazon, Intel, and Uber, and even motor companies such as Audi, BMW, and Mercedes. Additionally, this course could make learners realize the importance of spatial big data to deal with real world data science problems.

2. Course Objectives:

The overall goal of this course is to learn appropriate tools for spatial data analysis. The specific objectives are for the students to:

- To understand spatial epidemiology and the properties of various spatial data types.
- To develop skills in visualizing and standardizing spatial data.
- To gain insights into spatial autocorrelation indicators and basic modeling techniques.
- To explore advanced Bayesian methods for complex spatial data applications.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CL	Os	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will comprehend key concepts in spatial epidemiology and different types of spatial data.	3	2	2	1	2
2.	Students will acquire skills in mapping and standardizing spatial data and creating choropleth maps.	3	3	2	3	2
3.	Students will learn to identify and analyze spatial autocorrelation using appropriate indicators and models.	2	3	3	2	2
4.	Students will gain proficiency in applying Bayesian methods to spatial data problems.	1	2	3	3	2
5.	Students will demonstrate the ability to apply spatial data analysis methods in real- world scenarios like disease mapping.	1	2	1	3	3

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1-2	Basic Concept: Introduction, spatial epidemiology,	Classroom	1
	properties and nature of spatial data and spatial process,	Lecture and	
	Classes of spatial data, Geostatistical data, lattice data,	Discussion	
	spatial point process.		
3	Exploring Areal Unit data: Mapping count data, LIKAR	Classroom	1, 2
	data, issues with crude counts, making rates comparable	Lecture and	
	(standardization).	Discussion	

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
4-5	Making choropleth map, classification of schemes, class	Classroom	2
	number and colours, defining the Neighbourhood	Lecture and	
	structure, spatial weights.	Discussion	
6-7	Spatial Autocorrelation: definition, global indicators of	Classroom	3
	spatial autocorrelation, Moran' I, Geary's c, local	Lecture and	
	indicators of spatial autocorrelation (LISA).	Discussion	
8-9	Modelling Areal unit data-Aggregate count data,	Classroom	2,3
	traditional models, and methods, spatial smoother.	Lecture	
10-12	Hierarchical Bayesian Methods: Poisson-Gamma model,	Classroom	3, 4, 5
	Poisson-Lognormal model, Conditional autoregressive	Lecture and	
	(CAR) model, proper CAR model, convolution model,	Discussion	
	Bayesian specification of CAR model, MCMC		
	computation, other correlation models.		
13-14	Bayesian Spatial Data Analysis: Binomial model, spatial	Classroom	4, 5
	epidemiological issues, count data models, disease	Lecture and	
	mapping, Risk estimation, disease clustering, ecological	Discussion	
	analysis, image analysis, fMRI modelling.		

CLOs	Teaching-Learning Strategy	Assessment Strategy		
CLO-1	Classroom Lecture, Interactive	Quizzes, Oral questioning, Assignments,		
to	Group Discussion, Multimedia	Class tests and performance, Presentations		
CLO-5	Presentation	and Semester end examination.		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Moraga, P. (2023). Spatial Statistics for Data Science: Theory and Practice with R. CRC Press.
- ii. Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.

- i. Haining, R. P., & Li, G. (2020). Regression Modelling Wih Spatial and Spatial-Temporal Data: A Bayesian Approach. CRC Press.
- ii. Kopczewska, K. (2020). Applied spatial statistics and econometrics: data analysis in R. Routledge.
- iii. Waller, L.A. & Gotway, C.A. (2004). Applied Spatial Statistics for Public Health Data, John Wiley and Sons Inc., New York.
- iv. Lesaffre, E. & Lawson, A.B. (2012). Bayesian Biostatistics, John Wiley and Sons Inc., New York.
 - v. Schabenberger, O., & Pierce, F.J. (2001). Contemporary Statistical Models for the Plant and Soil Sciences, CRC Press, New York.

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0610-5116	Computer Intensive Statistics	Elective	Value: 3.0	100

1. Rationale of the Course:

The course is designed to equip students with the essential skills to navigate the complexities of contemporary statistical analysis. By integrating computational approaches into statistical methodologies, students will be better prepared to tackle real-world challenges, make informed decisions, and contribute meaningfully to the evolving field of statistics in the era of big data.

2. Course Objectives:

The overall goal of this course is to discuss highly computational statistics relating to the computer. The specific objectives are for students to:

- To learn bias correction, pseudo-value calculation, and extending jackknifing to multiple sample problems.
- To understand bootstrapping strategies, sampling distributions, and bootstrap distributions.
- To grasp the use of confidence limits in percentile bootstrap, its application in hypothesis testing, and its variants.
- To acquire knowledge in simulation testing methods and fundamentals of density estimation.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
 Students will learn to apply jackknifing techniques for bias correction and multi-sample analysis. 	3	2	2	1	2
2. Students will understand basic bootstrapping strategies and distribution analysis.	3	3	2	3	2
3. Students will master using percentile bootstrap for hypothesis testing and its computational aspects.	2	3	3	2	2
4. Students will develop skills in various simulation testing methods and their practical applications.	2	2	3	3	2
5. Students will gain knowledge in kernel selection and smoothing parameter choices for effective density estimation.	3	2	1	3	3

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Jackknifing: Bias Correction, Pseudo-Value, Approximate	Classroom	1
	Confidence Intervals, Extension to 2-or-More-Sample	Lecture and	
	Problems.	Discussion	
2	Bootstrapping: Bootstrap Strategy, Sampling Distributions,	Classroom	2
	Empirical Distributions, Bootstrap Distributions.	Lecture	
3-4	Percentile Bootstrap: Definition and use of Confidence Limits,	Classroom	3
	Relation to Jackknife, Application to Hypothesis Testing,	Lecture and	
	Number of Simulation Samples Required, Variants: Smoothed	Discussion	

Week	Торіс	Teaching- Learning Strategy	Corresponding CLOs
	Bootstrap, Bias-Corrected Bootstrap, Computational Aspects, Balanced Re-Sampling.		
5-6	Simulation Testing: Randomization Test, Approximate Randomization Test, Monte-Carlo Tests. Unbiasedness, Power, Number of Simulated Samples Needed.		4
8-9	Density Estimation: Definition, Examples, Bias, MSE and IMSE, Choice of Kernel, and Smoothing Parameter, Computation Via Fast Fourier Transform,		5
10-11	Different methods of Kernel estimation, shape-adjusted method for Kernel estimation, Kernel Estimation in Nonparametric Regression.		5
12-14	Semiparametric and Nonparametric Regression: local polynomial fitting, estimation of conditional mean function, quantile regression, semiparametric quantile estimation.		5

CLOs	Teaching-Learning Strategy	Assessment Strategy		
CLO-1	Classroom Lecture, Interactive	Quizzes, Oral questioning, Assignments,		
to	Group Discussion, Multimedia	Class tests and performance, Presentations,		
CLO-5	Presentation	and Semester end examination.		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Zwanzig, S., & Mahjani, B. (2019). Computer Intensive Methods in Statistics. Chapman and Hall/CRC.
- ii. Eforn, B. and Tibshirani, R. J. (1993). An Introduction to Bootstrap, Chapman and Hall, New York.
- iii. Efron, B. (1987). The Jackknife, the Bootstrap and other Re-Sampling Plans, Society for Industrial Mathematics.

- i. Hjorth, J. U. (2017). Computer intensive statistical methods: Validation, model selection, and bootstrap. Chapman and Hall/CRC.
- ii. Chernick, M. R., & LaBudde, R. A. (2014). An introduction to bootstrap methods with applications to R. John Wiley & Sons.
- iii. Noreen, E. W. (1989). Computer-Intensive Methods for Testing Hypothesis, Wiley, New York.
- iv. Shao, J. and Tu, D. (1995). Jackknife and Bootstraps, Springer-Verlag, New York.
- v. Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0610-5117	Bioinformatics and Genetic Algorithm	Elective	3.0	100

1. Rationale of the Course:

This course is designed to introduce the computational and algorithmic challenges in biological data analysis. Students will gain exposure to advanced statistical and computational methods, enhancing their skills in Bio-Analytics, Data Analytics, Proteomics, and Information Technology. They will learn to apply these methodologies in various fields such as Pharmacology, utilizing bioinformatics tools to manage and analyze large-scale biological data effectively.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Bioinformatics and Genetics with the application of Statistics. The specific objectives include:

- To grasp the basics of biology, formal and molecular genetics, and inheritance patterns
- To acquire knowledge in genetic markers, genotyping, Hardy-Weinberg Equilibrium, and quality control techniques for genotype data.
- To develop skills in genetic association analysis, study design, and understanding linkage disequilibrium.
- To gain proficiency in using primary and secondary biological databases, sequence alignment techniques, and bioinformatics software for data analysis.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with Program Learning Outcomes (PLOs)

CLO)s	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will understand key concepts in	3	2	2	1	2
	biology, genetics, and inheritance.					
2.	Students will learn to identify genetic	3	3	2	3	2
	markers and perform genotype data					
	quality control.					
3.	Students will develop skills in genetic	2	3	3	2	2
	association and linkage analysis.					
4.	Students will gain proficiency in using	1	2	3	3	2
	biological databases and file formats.					
5.	Students will acquire the ability to apply	3	2	2	1	2
	bioinformatics tools for data analysis.					
4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1-2	Fundamentals of Biology: Basic Biology, Formal	Classroom	1
	and Molecular Genetics, Inheritance Pattern.	Lecture and	
		Discussion	
3-4	Genetic Markers and Quality Control: Genetic	Classroom	2
	Markers, Genotyping, HWE; Quality control (QC)	Lecture and	
	for genotype data.	Discussion	
5	Genetic Association and Linkage Analysis: Genetic	Classroom	3
	Association Analysis, Study design; Linkage	Lecture and	
	disequilibrium (LD).	Discussion	
6-7	Biological Databases and File Formats: Primary	Classroom	4
	databases (DDBJ, GenBank, EMBL), Secondary	Lecture and	
	databases (HapMap, 1000 Genomes Project)	Discussion	
	Genome Databases (Ensembl, NCBI etc.) Protein		
	sequence databases (DisProt, Swiss-Prot etc.)		
	Protein structure database, Protein expression		
	database, Specialized databases (TCGA).		
8-9	Genome-wide Association Studies (GWAS):	Classroom	4
	Genotype imputation, Statistical analysis for	Lecture and	
	GWAS, Replication of the results from GWAS,	Discussion	
	Meta-analysis of GWAS; Clinical impact of GWAS.		
10	Genetic Association and Linkage Analysis: Pairwise	Classroom	4
	and Multiple Sequence Alignment, Sequence-	Lecture and	
	based database search algorithm.	Discussion	
11-12	Statistical and Machine Learning Approaches:	Classroom	5
	Support Vector Machine; Artificial neural network,	Lecture and	
	Deep learning, Hidden Markov chain.	Discussion	
13-14	Bioinformatics Analysis Tools: Analysis toolsets	Classroom	5
	(software) for analyzing massive amount of	Lecture and	
	biological data.	Discussion	

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Grou	p Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations,
CLO-4		and Semester end
CLO-5		examination.

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- Ziegler, A., Konig, I. R., & Pahlke, F. (2012). A Statistical Approach to Genetic Epidemiology: Concepts and Applications, with an E-learning platform, 2nd Edition, Wiley-Blackwell.
- ii. Foulkes, A., S., (2009). Applied Statistical Genetics with R: For Population-based Association Studies, Springer.

Supplementary Readings:

- i. Mills, M. C., Barban, N., & Tropf, F. C. (2020). An introduction to statistical genetic data analysis. Mit Press.
- ii. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., (2014). Essential Cell Biology, 4th Edition, Taylor & Francis Group, New York.
- iii. Warren Ewens and Gregory Grant, (2005). Statistical Methods in Bioinformatics: An Introduction, 2nd Edition, Springer.
- iv. Lesk, A., (2014). Introduction to Bioinformatics, 4th Edition, Oxford University Press.
- v. Baxevanis, A. D., and B. F. Ouellette, (2004). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, John Wiley and Sons.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0314-5118	Advanced Demography an	Elective	3.00	100
	Population Studies			

This course is essential for understanding complex population dynamics and their implications on global challenges such as urbanization, public health, and environmental sustainability. It equips students with advanced analytical skills to interpret demographic data and trends, vital for informed decision-making in fields like public policy, economics, and public health.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Applied Demography and Population Studies. The specific objectives include:

- To gain a comprehensive understanding of key demographic concepts including nuptiality, reproductive age, and family planning.
- To develop skills to analyze and interpret data related to mortality, fertility, migration, and urbanization.
- To learn to apply various demographic models and methods, such as stable population models and population projections, to real-world scenarios.
- To understand the social and policy implications of demographic trends, focusing on issues like gender-based violence and population aging.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CL	Os	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will be able to analyze marriage rates and patterns, including age-specific trends and average ages at marriage.	3	2	2	1	2
2.	Students will gain skills in evaluating family planning methods and their effectiveness, including contraceptive use analysis.	3	3	2	3	2
3.	Students will learn to apply demographic models to estimate mortality and fertility rates from various data sources.	2	3	3	2	2
4.	Students will develop an understanding of migration types, trends, and their impact on urbanization.	1	2	3	3	2
5.	Students will be able to apply demographic knowledge to address global challenges such as population aging and gender-based violence.	2	2	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching- Learning	Corresponding CLOs
		Strategy	
1	Nuptiality: Concept, Nuptiality Rates: Crude Marriage Rate, Age-specific Marriage Rates, Mean Age at Marriage, Singulate Mean Age at Marriage. Nuptiality models, Nuptiality table, Nuptiality pattern in Bangladesh.	Lecture and	1
2	Reproductive Age, Family Planning Methods & Couple Year Protection: Basic Concepts and Definitions, Overview of Family Planning Methods, Calculation of Couple Year Protection.	Lecture and	1
3	Effectiveness of Contraceptive Use: Fecundability and Fecundity, Life Table Analysis of Contraceptive Failure, Construction of Single and Multiple Decrement Life Table.	Lecture and	2
4-6	Mortality and Fertility models: Birth Averted by Family Planning program. Bongaarts model and proximate determinants, targeting and Projection by Bongaarts Model. Estimation of Adult Mortality by Indirect Means (Such as Orphan Hood, Widowhood methods), Gompertz Model, Reduced Gompertz Model. Estimation of fertility and Mortality from two censuses, age Distribution, Estimation of Mortality from Census based method, census coverage and Estimation, completeness of Coverage of Census and Vital Registration Data.	Lecture and Discussion	3
7	Gender Preference: Family Size, Ideal Family Size, Sex Preference of Family Size, Factors Affecting Sex Preference in Bangladesh, Relationship Between Actual Fertility and Ideal Fertility, Fertility of Spacers and Limiters and their Effect. Effect of under Five Mortality or Infant Mortality on Desired Family Size.	Lecture and	2,3
8	Migration and Urbanization: Concepts of Migration, Types and Measures of Migration, Consequences, Determinant's and Trends of Migration. Urbanization and Measures of Urbanization.	Lecture and	4
9	Stable Population Model: Stable, quasi-stable and stationary population model. Fertility, mortality, and age structure in stable population. Lotka and Dublen's model.		3
10-11	Population Projection & Forecasting: Population estimates and projections. Mathematical methods, Component method of population projection. Markov Chains for Individual life histories. Features of forecasting and forecasting error.	Lecture and Discussion	4, 5

Week	Торіс	Teaching- Learning Strategy	Corresponding CLOs
12	Population Aging: Elderly Situation, Aging Index, Support Ratio Index, Care Index, Elderly Situation in Bangladesh, Goals and Components (Elements) of Aging Policy in Bangladesh.	Lecture and	5
13	Gender Based Violence (GBV): Concept, Reasons for GBV, Measures of GBV: Physical, Sexual, Emotional, Economic and Controlling Behaviour. Domestic Violence, Socio- Economic and Reproductive Health Implication of GBV. Steps in Reducing Gender Based Domestic Violence.		5
14	Other Issues in Demography: Social Development Indicators. Advocacy, Components of Advocacy. Social and Behavioural Change (SBC) strategies. Sustainable Development Goal (SDG): Rational and Motivation Behind SDG, Goal, Target, Indicator of SDG, Current Situation of Bangladesh Considering Different Indicators.		5

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations, and
CLO-4		Semester end examination.
CLO-5		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Chiang, C. L. (1984). The Life Table and its Applications, Krueger Pule, John Wiley, New York.
- ii. Bongaarts, J. and, Potter, R. G. (1983). Fertility, Biology and Behaviour: An Analysis of the Proximate Determinants of Fertility, Academic Press, Sandiego, California.

Supplementary Readings:

- i. Colin, N. (1988). Methods and Models in Demography, Belhaven Press, London.
- ii. Selected Articles from Population Studies, Demography, Population and Development Studies in Family Planning etc.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks: 100
0532-5119	Remote Sensing and GIS	Elective	3.0	

This course is designed to introduce the principles and applications of remote sensing and Geographic Information Systems (GIS). Students will learn the fundamentals of remote sensing technology, data acquisition, image interpretation, and GIS data management. Practical applications in environmental science, urban planning, and natural resource management would be explored.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Remote Sensing and GIS and its applications. The specific objectives of this course included:

- To gain a deep understanding of the fundamental principles underlying remote sensing and the technical aspects and limitations.
- To perform critical evaluations of digital image processing techniques, spanning from data preprocessing to image classification.
- To employ digital image processing to extract geographical information from remotely sensed data.
- To learn how to integrate remote sensing data and GIS for comprehensive geospatial analysis and decision-making.

	course learning outcomes (clos) and wapping of clos with Plos					
CLO	S	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will understand the fundamental	3	3	2	1	2
	principles of remote sensing.					
2.	Students will be able to design, implement, and	2	3	2	3	2
	critically evaluate a range of digital image					
	processing techniques, and conduct field data					
	collection, and accuracy assessment.					
3.	Students should be capable of utilizing digital	2	3	3	2	2
	image processing to extract geographic					
	information from remotely sensed data.					
4.	Students should be able to evaluate the	1	2	3	3	2
	opportunities and methods for integrating					
	remote sensing and GIS for comprehensive					
	geospatial analysis and decision-making.					
5.	Students should develop the skill to understand	1	2	2	3	3
	the principles of GIS data management and its					
	application in various domains.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching- Learning Strategy	Corresponding CLOs
1-2	Introduction to Remote Sensing: Overview of	Classroom	1
	Remote Sensing, Electromagnetic Spectrum and	Lecture and	
	Sensors, Data Acquisition Methods, Limitations and	Discussion	
	Constraints		
3-4	Digital Image Processing Techniques: Data	Classroom	2
	Preprocessing, Image Enhancement, Image	Lecture and	
	Classification, Field Data Collection, Accuracy	Discussion	
	Assessment		
5-6	Geographic Information Systems (GIS)	Classroom	3, 4
	Fundamentals: Introduction to GIS, Spatial Data	Lecture and	
	Models, Coordinate Systems and Map Projections,	Discussion	
	Data Sources for GIS		
7-8	Data Collection and Integration: GPS and Data	Classroom	2, 3
	Collection Tools, Data Accuracy and Precision, Field	Lecture and	
	Surveys and Mobile GIS, Data Editing and Quality	Discussion	
	Control		
9-10	Spatial Analysis in GIS: Spatial Query and Analysis,	Classroom	4
	Overlay Operations, Network Analysis, Terrain	Lecture and	
	Analysis	Discussion	
11-12	Environmental Applications: Land Use/Land Cover	Classroom	4, 5
	Mapping, Environmental Monitoring,	Lecture and	
	Environmental Impact Assessment, Case Studies	Discussion	
13-14	Urban Planning and Natural Resource	Classroom	4, 5
	Management: GIS in Urban Planning, Location-	Lecture and	
	Based Services (LBS), Natural Resource	Discussion	
	Management, Case Studies		

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lectures, Practical	Quizzes, Oral questioning, Assignments,
CLO-2	Exercises, in GIS Software, Interactive	Class tests and performance,
CLO-3	Group Discussion, field data collection,	Presentations, and Semester end
CLO-4	case studies, and project work.	examination.
CLO-5		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Burrough, P. A., McDonnell, R. A. and Lloyd, C, (2015). Principles of Geographical Information Systems, 3rd Edition. Oxford University Press.
- ii. Campbell, J.B., (2022). Introduction to Remote Sensing, 6th Edition. New York, Guilford Press.
- iii. Bhatta, B. (2021). Remote sensing and GIS, 3rd Edition, Oxford University Press.

Supplementary Readings:

- i. Longley, P.A., Goodchild, M.F., Maguire, D.J. and Rhind, D.W. (2015). Geographic Information Systems and Science, 4th Edition. Wiley.
- ii. Krygier, J. and Wood, D., (2016). Making maps A visual guide to map design for GIS, 3rd Edition. The Guilford Press.
- iii. Lawhead, J. (2023). Learning geospatial analysis with Python. 4th Edition, Packt Publishing Ltd.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0521-5120	Environmental Statistics and	Elective	3.00	100
	Modeling			

This course is designed to equip students with the specialized analytical tools and techniques essential for addressing complex environmental challenges. This course aims to bridge the gap between theoretical statistical concepts and practical applications in environmental science, empowering students to make informed decisions in environmental research and policymaking. Through hands-on exercises and case studies, participants will gain the skills necessary to navigate intricate environmental datasets in the context of environmental issues.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Environmental Statistics and its applications. The specific objectives include:

- To equip students with advanced statistical tools and techniques specifically tailored for analyzing environmental data.
- To enhance students' ability to interpret complex environmental data sets critically.
- To learn to apply statistical methods to address real-world environmental challenges.
- To produce professionals who can bridge the gap between statistical expertise and environmental research, facilitating the integration of statistical methodologies.

C	LOs	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will gain a basic understanding of statistical methods in Environmental analysis.	3	3	3	1	2
2.	Students can develop skills in modeling environmental data and to interpret the results of statistical models in the context of environmental processes.	2	3	2	3	2
3.	Students can gain expertise in spatial and temporal statistical analysis methods relevant to environmental studies.	2	3	3	2	2
4.	Students should be able to apply geostatistical and spatiotemporal techniques to investigate patterns, trends, and variability in environmental data.	1	3	3	3	2

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1-2	Environmental Monitoring and Sampling: Inaccessible	Classroom	1
	and Sensitive Data, Encountered Data, Length-Biased or	Lecture and	
	Size-Biased Sampling and Weighted Distributions,	Discussion	
	Ranked-Set Sampling. Quadrat Sampling, Transect		
	Sampling and Adaptive Sampling.		
3	Outliers and Robustness: Outlier and Robustness, Aims	Classroom	1
	and Objectives of Outlier, Importance of Outliers in	Lecture and	
	Environmental Studies, Outlier-Generated Models,	Discussion	
	Multiple Outliers: Masking and Swamping.		
	Accommodation: Outlier-Robust Methods, Multivariate		
	Outliers, Detecting Multivariate Outliers. Tests of		
	Discordancy, Robustness in General.		
4	Environmental Standards: Concept of Environmental	Classroom	1, 2
	Standards, Statistically Verifiable Ideal Standard (SVIS),	Lecture and	
	Guard Point Standards, Standards along Cause-Effect	Discussion	
	Chain.		
5-6	Environmental Modelling and Applications:	Classroom	4
	Applications of Modelling in Environmental Data	Lecture and	
	Analysis. Numerical Analysis and Modeling, Time Series	Discussion	
	Modelling. Generalized Linear Mixed Model.		
7-8	Spatial and Temporal Modeling in Environmental	Classroom	2, 3
	Statistics: Spatial statistics for environmental data,	Lecture and	
	Temporal analysis and time series modeling.	Discussion	
	Geostatistics and its applications in environmental		
	studies. Advanced techniques for analyzing		
	spatiotemporal data in the environmental context.		
9	Bayesian Statistics in Environmental Research:	Classroom	3, 4
	Introduction to Bayesian statistics, Bayesian inference in	Lecture and	
10	environmental modeling.	Discussion	2.4
10	Spatial Prediction and Kriging: Ordinary Kriging, Effect	Classroom	2, 4
	of Variogram Parameters on Kriging, Lognormal and	Lecture and	
	Trans-Gausian Kriging, Cokriging, Robust Kriging,	Discussion	
11	Universal Kriging, Median-Polish Kriging.	Classroom	2.4
11	Extreme Value Distributions: Concept of extremes in	Classroom	2, 4
	Environment. Extreme Value distribution, Limiting	Lecture and Discussion	
	distribution of Extreme value distribution. Generalized	DISCUSSION	
	Extreme Value (GEV) Distributions.		

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
12-13	Modeling of Natural Hazards: Heavy rainfall, peak river	Classroom	4
	flows, heat waves, extreme sea surface temperatures,	Lecture and	
	strong wind gusts, extreme wave heights, high pollution	Discussion	
	levels, devastating landslides, dangerous wildfires.		
14	Climate Change Modelling: IPCC Scenarios. Global	Classroom	2, 4
	Circulation Model (GCM), Regional Climate Model	Lecture and	
	(RCM).	Discussion	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations, and
CLO-4		Semester end examinations.

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Clark, M. M. (2009). Transport Modeling for Environmental Engineers and Scientists, 2nd Edition, Wiley.
- ii. Schnoor, J. L. (1996). Environmental Modeling: Fate and Transport of Pollutants in Water, Air and Soil, John Wiley & Sons, Inc., New York, USA.
- iii. Wayne, R. Ott (1995). Environmental Statistics and Data Analysis, Lewis Publishers, England.

Supplementary Readings:

- i. Barnett, V. (2004). Environmental Statistics: Methods and Applications, John Wiley and Sons, New York.
- ii. Kotz, S., & Nadarajah, S. (2000). Extreme value distributions: theory and applications. world scientific.
- iii. Harris, M. J. (2002). Environmental and Natural Resource Economics: A Contemporary Approach, Houghton Mifflin Company.
- iv. Robert, H. (1990). Spatial Data Analysis in the Social and Environmental Sciences, Cambridge University Press, Cambridge.

LAB/Practical Courses for Semester 1

Course Code:	Course Title:	Course	Credit	Total Marks:
0542-5121	LAB Advanced Multivariate Analysis	Type: LAB	Value: 1.0	100

1. Rationale of the Course:

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5101: Advanced Multivariate Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
 Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct advanced multivariate analyses. 	1	2	1	3	3
 Students should be able to apply advanced multivariate analysis techniques to real-world problems and make scientific reports. 	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Correspondin
			g CLOs
1-14	As per the theoretical	Lab Exercises, Computer intensive	1, 2, 3
	course "0542-5101:	learning, Interactive Workshops, Hands-	
	Advanced Multivariate	on Coding Sessions, Case Studies, Group	
	Analysis".	Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive learning,	Quizzes, Oral questioning,
CLO-2	Interactive Workshops, Hands-on Coding	Assignments, Class tests and
CLO-3	Sessions, Case Studies, Group Discussions,	performance, Presentations, and
	Project-Based Learning.	Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5122	LAB- Big Data Analytics	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5102: Big Data" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- [©] To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized					
statistical software, such as R, Python, or	1	2	1	3	3
SPSS, to conduct Big Data analysis.					
2. Students should be able to apply Big Data					
techniques to real-world research and	1	3	1	3	3
industry problems.					
3. Students will learn how to make a scientific	1	3	1	2	2
report based on statistical results.		5	L L	5	5

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical	Lab Exercises, Computer intensive	1, 2, 3
	course "0542-5102:	learning, Interactive Workshops, H ands-	
	Big Data".	on Coding Sessions, Case Studies, Group	
		Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations, and
	Learning.	Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5123	LAB- Longitudinal Data Analysis	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5111: Longitudinal Data Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Longitudinal Data analysis.	1	2	1	3	3
2. Students should be able to apply Longitudinal Data Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding	
			CLOs	
1-14	As per the theoretical course "0542-5111: Longitudinal Data Analysis".	Lab Exercises, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project-Based Learning.	1, 2, 3	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations,
	Discussions, Project-Based Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course	Credit	Total
0542-5124	LAB Advanced Categorical Data Analysis	Type: LAB	Value: 1.0	Marks: 100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5112: Advanced Categorical Data Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Advanced Categorical Data Analysis.	1	2	1	3	3
2. Students should be able to apply Advanced Categorical Data Analysis techniques to real- world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Topic Teaching-Learning Strategy	
1-14	course "0542-5112:	Lab Exercises, Computer intensive learning, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project- Based Learning.	1, 2, 3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations,
	Discussions, Project-Based Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course	Credit	Total Marks:
0542-5125	LAB- Advanced Time-series Analysis	Type: LAB	Value: 1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5113: Advanced Time-series Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Advanced Time-series Analysis.	1	2	1	3	3
2. Students should be able to apply Advanced Time-series Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical course "0542-5113: Advanced Time- series Analysis"	Lab Exercises, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project-Based Learning.	1, 2, 3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations, and
	Discussions, Project-Based Learning.	Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5126	LAB- Meta Analysis	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5114: Meta Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- [®] To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Meta Analysis.	1	2	1	3	3
2. Students should be able to apply Meta Analysis to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Topic Teaching-Learning Strategy	
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive Workshops,	1, 2, 3
	course "0542-5114: Meta	Hands-on Coding Sessions, Case	
	Analysis".	Studies, Group Discussions, Project-	
		Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations,
	Discussions, Project-Based Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5127	LAB- Spatial Data Analysis	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5115: Spatial Data Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- 🕴 To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Spatial Data Analysis.		2	1	3	3
2. Students should be able to apply Spatial Data Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical course "0542-5115: Spatial Data Analysis".	-	1, 2,3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations, and
	Discussions, Project-Based Learning.	Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0610-5128	LAB- Computer Intensive Statistics	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0610-5116: Computer Intensive Statistics" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course, Computer Intensive Statistics.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Computer Intensive Statistics	1	2	1	3	3
2. Students should be able to apply Computer Intensive Statistics techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive Workshops,	1, 2, 3
	course "0610-5116:	Hands-on Coding Sessions, Case	
	Computer Intensive	Studies, Group Discussions, Project-	
	Statistics".	Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops,	Assignments, Class tests and
CLO-3	Hands-on Coding Sessions, Case	performance, Presentations, and
	Studies, Group Discussions, Project-	Semester end examination.
	Based Learning.	

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0610-5129	LAB- Bioinformatics and	LAB	1.0	100
	Genetic Algorithm			

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0610-5117: Bioinformatics and Genetic Algorithm" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Bioinformatics and Genetic Algorithm analysis.	1	2	1	3	3
2. Students should be able to apply Bioinformatics and Genetic Algorithm techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical course "0610-5117: Bioinformatics and Genetic Algorithm".	Lab Exercises, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project-Based Learning.	1, 2, 3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations,
	Discussions, Project-Based Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0314-5130	LAB- Advanced Demography	LAB	1.0	100
	and Population Studies			

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0314-5118: Advanced Demography and Population Studies" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Population Studies analysis.	1	2	1	3	3
2. Students should be able to apply Demographic techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	course "0314-5118:	Lab Exercises, Computer intensive learning, Interactive Workshops, Hands-on Coding Sessions, Case	1, 2, 3
	and Population Studies"	Studies, Group Discussions, Project- Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations,
	Discussions, Project-Based Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0532-5131	LAB- Remote Sensing and GIS	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0532-5119: Remote Sensing and GIS" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course, Remote Sensing and GIS.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Remote Sensing and GIS analysis.	1	2	1	3	3
2. Students should be able to apply Remote Sensing and GIS techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	1, 2, 3
	course "0532-5119:	Workshops, Hands-on Coding	
	Remote Sensing and GIS".	Sessions, Case Studies, Group	
		Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-	Assignments, Class tests and
CLO-3	on Coding Sessions, Case Studies, Group	performance, Presentations, and
	Discussions, Project-Based Learning.	Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0521-5132	LAB- Environmental Statistics	LAB	1.0	100
	and Modeling			

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0521-5120: Environmental Statistics and Modeling" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
 Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Environmental Statistics and Modeling analysis. 	1	2	1	3	3
2. Students should be able to apply Environmental Statistics and Modeling to real-world research.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14		Lab Exercises, Interactive Workshops,	1, 2, 3
	course "0521-	Hands-on Coding Sessions, Case	
	5120: Environmental	Studies, Group Discussions, Project-	
	Statistics and Modeling".	Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Computer intensive	Quizzes, Oral questioning,
CLO-2	learning, Interactive Workshops, Hands-on	Assignments, Class tests and
CLO-3	Coding Sessions, Case Studies, Group	performance, Presentations,
	Discussions, Project-Based Learning.	and Semester end examination.

6. Assessment and Evaluation

Year 5, Semester 2

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5201	Advanced Classical and	Core	Value: 3.0	100
	Bayesian Inference			

1. Rationale of the Course:

This course is vital in a world where data-driven decision-making is increasingly prevalent across various fields. This course provides a deep dive into the principles and methodologies of both classical (frequentist) and Bayesian statistical inferences, which are cornerstone approaches in statistical analysis.

2. Course Objectives:

This course is primarily designed to provide students with the fundamentals of advanced classical and Bayesian inference. The specific objectives include:

- 🔮 To gain a thorough understanding of both classical and Bayesian statistical methods.
- To develop advanced skills in data analysis, focusing on robust statistics and hypothesis testing.
- To acquire expertise in Bayesian modeling, including hierarchical and mixed models.
- To apply statistical theories and methods effectively in real-world data analysis scenarios.

CL	Os	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will be able to apply robust statistical					
	methods, including various estimators in diverse	3	3	2	1	2
	data analysis scenarios.					
2.	Students will acquire the skills to conduct	3	3	2	3	2
	advanced hypothesis testing.				,	_
3.	Students will gain expertise in Bayesian statistical					
	modeling, including the development and	2	3	3	2	2
	application of hierarchical models and mixed					
	models.					
4.	Students will demonstrate the ability to apply					
	both classical and Bayesian statistical methods in					
	the analysis and interpretation of real-world data,	1	2	2	3	3
	ensuring informed decision-making in various					
	contexts.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs.

		Teaching-	
Week	Торіс	Learning	Corresponding
		Strategy	CLOs
1	Robust Statistics: Concept of Robust Statistics, Influence		
1	Functions, Classes of M-Estimators, L-Estimators, R-		
	Estimators, Multidimensional Estimators, Application of		1
	Robust Estimators.	21000001011	
2	U-and V Statistics and their Properties, Best Unbiased	Classroom	
	Estimators and their Properties.	Lecture and	1
		Discussion	
3	Confidence Sets: Confidence Belt, Randomized	Classroom	
	Confidence Sets, Invariant Confidence Sets, Bonferroni's	Lecture and	2
	Method, Scheffe's Method in Linear Models. Confidence	Discussion	2
	Bands for Cumulative Distribution Functions.		
4	Bootstrap Confidence Sets: Construction of Bootstrap	Classroom	
	Confidence Intervals, Asymptotic and Accuracy, High-	Lecture and	2
	Order Accurate Bootstrap Confidence Sets.	Discussion	
5	Empirical Processes: Weak convergence and stochastic	Classroom	
	equicontinuity, stochastic equicontinuity via	Lecture and	
	summarization and bracketing, Brownian motion and	Discussion	2
	Brownian bridges, Gaussian Processes, Glivenko-Cantelli		
	and Donsker theorems.		
6-7	Theory of Hypothesis Testing: Tests Under Restricted	Classroom	
	Alternatives, Similar Region and Neyman Structure, Most	Lecture and	
	Powerful Similar Region (MPSR) Test, Uniformly Most	Discussion	2
	Powerful Similar Region (UMPSR) Test, Asymptotic		۷.
	Efficiency of Test, Sequential Probability Ratio Test (SPRT)		
	for three Hypotheses,		
8	Bayesian Tools for Statistical Modeling: Markov Chain	Classroom	
	Monte Carlo (MCMC) Algorithm, Hierarchical models,	Lecture and	
	the Poisson-gamma hierarchical model, posterior	Discussion	3
	predictive distributions, Bayesian, and empirical		
	Bayesian approach,		
9	Gaussian hierarchical models, mixed models, the linear	Classroom	
	mixed model, the generalized linear mixed model,	Lecture and	2, 3
	nonlinear mixed models,	Discussion	
10-11	Estimation of the random effects and posterior predictive	Classroom	
	distributions, choice of the level-2 variance prior,	Lecture and	
	propriety of the posterior, assessing and accelerating	Discussion	2, 3
	convergence, comparison of Bayesian and frequentist		
	hierarchical models.		
12	Model building and assessment: Measures for model		
	selection, the Bayes factor, information theoretic		3, 4
	measures for model selection.	Discussion	

Week	Торіс	Learning	Corresponding CLOs
13	Model selection based on predictive loss functions, model checking, sensitivity analysis, posterior predictive checks.		2, 3, 4
14	Variable selection: classical variable selection vs Bayesian variable section, variable selection based on Zellner's g-prior, variable section based on Reversible Jump Markov chain Monte Carlo, spike and slab priors, stochastic search variable selection, Gibbs variable selection, Bayesian model selection, Bayesian model averaging.	Lecture and	2, 3, 4

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations,
CLO-4		and Semester end examination.

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. George, C. and Berger, R. L. (2002): Statistical Inference, 2nd Edition, Thompson-Duxbury, USA.
- ii. Lehman, E. L. (1997): Testing Statistical Hypothesis, 2nd Edition, Springer-Verlag, New York.
- iii. Lesaffre, E.and Lawson, A. B. (2014): Bayesian Biostatistics, John Wiley and Sons Inc., New York.
- iv. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). Bayesian data analysis.
 3rd Edition, Chapman and Hall/CRC.

Supplementary Readings:

- i. Lehman, E. and Cassela, G. (1998): Theory of Point Estimation, 2nd Edition, Springer Verlag, New York.
- Hogg, R. H., Mckean, J. W. And Craig, A. T. (2019): Introduction to Mathematical Statistics, 8th Edition, Pearson Education (Singapore) Pte Ltd.
- Rohatgi, U. K. and Saleh, A. K. Md. E. (2015): An Introduction to the Probability and Statistics, 3rd Editions, John Wiley and Sons Inc., New York.

Course Code:	Course Title:	Course Type:	Credit Value: 3.0	Total Marks:
0610-5202	Deep Learning	Elective		100

This course is designed to offer a thorough initiation into the realm of deep learning, a specialized domain within machine learning that revolves around intricate neural networks featuring multiple layers. This course will cover the fundamental concepts, techniques, and applications of deep learning, enabling students with the knowledge and skills necessary to grasp and effectively employ this influential technology across diverse domains.

2. Course Objectives:

This course is primarily designed to provide students with the fundamentals of deep learning and its applications. The specific objectives include:

- To articulate the fundamental principles and concepts of deep learning.
- To implement deep learning models using widely used frameworks.
- To understand the backpropagation algorithm and gradient descent optimization techniques.
- To demonstrate the ability to train and evaluate deep neural networks for a wide range of applications, and advanced deep learning topics.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will demonstrate a comprehensive	3	2	2	1	2
understanding of the fundamental concepts and					
principles of deep learning.					
2. Students will utilize popular deep learning	3	3	2	3	2
frameworks such as to implement deep neural					
network models effectively and efficiently.					
3. Students will explain the backpropagation	2	3	3	2	3
algorithm and apply various gradient descent					
optimization techniques to train deep learning					
models.					
4. Students will develop the ability to train, evaluate,	1	2	3	3	3
and fine-tune deep neural networks for diverse					
real-world tasks.					
5. Students will explore and analyze advanced deep	1	2	2	3	3
learning concepts and apply them to solve					
complex problems in various domains.					

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1-2	Overview of Deep Learning and its Applications:	Classroom	1
	Feature extraction, Image classification, object	Lecture and	
	detection, speech recognition, text recognition,	Discussion	
	fraud detection, etc,		
3-4	Setting Deep Learning environment: Introduction	Classroom	1, 2
	to TensorFlow and PyTorch,	Lecture and	
		Discussion	
5-6	Concept of Neural Network, Gradient descent,	Classroom	2, 3
	Stochastic Gradient descent, Perceptron,	Lecture and	
	Multilayer Perceptron, Backpropagation,	Discussion	
	Optimization.		
7	Activation Functions: Sigmoid function, Hyperbolic	Classroom	2, 3
	Tangent function, ReLu-Rectified Linear units,	Lecture and	
	SoftMax function.	Discussion	
8	Stochastic Optimization: Gradient Descent,	Classroom	3,4
	Stochastic gradient Descent, RMSProp, Adadelta,	Lecture and	
	Adam, etc.	Discussion	
9	Convolutional Neural Networks (CNN): Overview	Classroom	2, 3, 4
	of different CNN architectures, Pooling, Padding,	Lecture and	
	Max Padding, Building, Training and Evaluating	Discussion	
	CNN,		
10	Application: image classification (transfer learning,	Classroom	4,5
	fine tuning, object detection, etc.), Autoencoders,	Lecture and	
	Word2Vec.	Discussion	
11	Introduction to Recurrent Neural Networks	Classroom	2, 3, 5
	(RNN): Overview of RNN architectures, training,	Lecture and	
	and optimization,	Discussion	
12	Application: Natural Language Processing,	Classroom	3, 4
	Sentiment Analysis, etc.	Lecture and	
		Discussion	
13	Advanced Architectures and Techniques:	Classroom	4, 5
	Reinforcement Learning, Autoregressive models	Lecture and	
	(NLMs), Variational Autoencoders (VAEs),	Discussion	
	Generative Adversarial Networks (GANs) for Image		
	Generation,		

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
14	Long Short-Term Memory (LSTM) Networks for	Classroom	3, 4, 5
	Sequential Data, Transformer Models for Language	Lecture and	
	Understanding (e.g., BERT, GPT).	Discussion	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	А	Assessme	nt Str	rategy		
CLO-1	Classroom Lecture, Inte	ractive C	Quizzes, (Oral	questioni	ng, Assignn	nents,
CLO-2	Group Discussion, Mult	imedia C	Class	tests	and	perform	nance,
CLO-3	Presentation, Pr	actical P	Presentati	ions,	and	Semester	end
CLO-4	Implementations	e	examinati	on.			
CLO-5							

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Bishop, C. M., & Bishop, H. (2024). Deep learning: Foundations and concepts. Springer.
- ii. Prince, S. J. (2023). Understanding Deep Learning. MIT Press.
- iii. Courville, A., Goodfellow, I., and Bengio, Y. (2016). Deep Learning (Adaptive Computation and Machine Learning series), MIT Press, USA.

Supplementary Readings:

- i. Ekman, M. (2021). Learning deep learning: Theory and practice of neural networks, computer vision, natural language processing, and transformers using TensorFlow. Addison-Wesley Professional.
- ii. Bishop, C. M., (2006). Pattern Recognition and Machine Learning. Springer Science+ Business Media, LLC.
- iii. Charu C, A. (2023). Neural networks and deep learning: a textbook. 2nd Edition, Springer.
- iv. Julian, D. (2018). Deep Learning with Pytorch Quick Start Guide: Learn to Train and Deploy Neural Network Models in Python, Packt Publishing.
- v. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, Second Edition. O'Reilly Media, Inc.

Chollet, F. (2021). Deep Learning with Python, 2nd Edition, Manning.

Optional courses for semester 2

Course Code:	Course Title:	Course Type:	Credit Value:	Total M	larks:
0542-5211	Incomplete Data Analysis	Elective	3.0	100	

1. Rationale of the Course:

This course is essential for a comprehensive understanding of modern data analysis techniques, as real-world datasets often contain missing or incomplete information. Students can effectively handle and interpret datasets with missing values, leading to more accurate and reliable analytical results. Understanding techniques for imputation in the context of incomplete data can significantly enhance one's ability to make informed decisions and draw meaningful insights from complex datasets.

2. Course Objectives:

This course is primarily designed to provide students with the fundamentals of incomplete data analysis and applications. The specific objectives include:

- To understand the types of incomplete data and learn how to identify and classify them in real-world datasets.
- To learn various techniques to effectively deal with incomplete data without introducing bias or distorting the analysis.
- To develop the understanding and applying different imputation methods to handle incomplete data in different contexts.
- To develop the ability to incorporate incomplete data into advanced statistical models.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to identify and describe	3	2	2	1	2
different types of missing data mechanisms.					
2. Students should be proficient in applying various	3	3	2	3	2
imputation techniques to handle missing data					
effectively.					
3. Students will be able to recognize and evaluate the	2	3	3	2	2
potential biases that incomplete data can introduce					
into statistical analyses.					
4. Students will gain a fundamental understanding of	1	2	3	3	2
missing data models and their application in					
statistical analysis.					
5. Students should be able to interpret and	1	2	2	3	3
communicate the results of analyses conducted on					
incomplete data effectively.					

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1-2	Introduction to Incomplete Data: Definition of		1
	incomplete data, Types of missing data,		
	Importance of handling incomplete data in		
	statistical analysis.		
3-4	Missing Data Mechanisms: Understanding	Classroom	1, 2
	different missing data mechanisms, Methods for	Lecture and	
	identifying missing data mechanisms. Dealing	Discussion	
	with various missing data patterns.		
5	Traditional Approaches to Handling Missing		2
	Data: Complete case analysis and its limitations,		
	Available case analysis and its implications.	Discussion	
6	Methods for imputing missing values: Mean	Classroom	2,3
	imputation, regression imputation, and last		
	observation carried forward.	Discussion	
7-8	Modern Imputation Techniques: Multiple	Classroom	3, 4
	imputation methods, Expectation-maximization	Lecture and	
	algorithm, K-nearest neighbor imputation,	Discussion	
	Model-based imputation techniques.		
9	Multiple Imputation by Chained Equations	Classroom	3, 4
	(MICE): Explanation of the MICE approach.	Lecture and	
	Difference with other imputation methods.	Discussion	
	Principles behind the MICE algorithm. MICE to		
	handle imputation process in a chained manner.		
10	Sensitivity Analysis for Incomplete Data:	Classroom	3, 4
10	Understanding the impact of missing data on		5,4
	analysis results, performing sensitivity analysis.	Discussion	
11	Techniques for testing the robustness of various		3,4
	statistical methods.	Lecture and	5,7
		Discussion	
12	Advanced Methods for Handling Incomplete	Classroom	4, 5
	Data: Maximum likelihood estimation, Bayesian		
	methods for handling missing data,	Discussion	
13-14	Nonparametric methods for handling missing	Classroom	3,4,5
	data, Machine learning techniques for handling		
	missing data.	Discussion	

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations,
CLO-4		and Semester end
CLO-5		examination.

5. Mapping CLOs with the Teaching-Leaning & Assessment Strategy

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings

- i. Van, B. S. (2021): Flexible Imputation of Missing Data, 2nd Edition, Chapman and Hall/CRC, New York.
- ii. Enders, C. K. (2022). Applied missing data analysis. Guilford Publications.
- iii. He, Y., Zhang, G., & Hsu, C. H. (2021). Multiple imputation of missing data in practice: Basic theory and analysis strategies. Chapman and Hall/CRC.

Supplementary Readings:

- i. Little, R. J. A. & Rubin, D. B. (2019): Statistical Analysis with Missing Data, 3rd Edition, John Wiley, New York.
- ii. Graham, J. W. (2012): Missing Data: Analysis and Design, Springer, New York.
- iii. Molenberghs, G., Fitzmaurice, G., Kenward, M. G., Tsiatis, A., & Verbeke, G. (Eds.).(2014). Handbook of missing data methodology. CRC Press.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5212	Robust Statistics	Core	3.0	100

This course is essential in today's data-driven world as it focuses on statistical methods that are resistant to outliers and deviations from standard assumptions. In a diverse range of fields such as finance, healthcare, and engineering, real-world data often contains anomalies that can significantly impact analysis. This course equips students with techniques to handle such challenges, ensuring accurate and reliable results even in the presence of outliers.

2. Course Objectives:

This course is primarily designed to provide students with the fundamentals of robust statistics and applications. The specific objectives include:

- To enable students to master in handling outliers and deviations and Familiarize students with various robust statistical models.
- To provide practical, hands-on experience in applying robust statistical techniques to real-world scenarios.
- To cultivate critical thinking skills by encouraging students to assess data quality, identify outliers, and make informed decisions.
- To develop students' ability to communicate complex statistical findings clearly and concisely, enabling them to convey the impact of robust methods on data analysis outcomes to both technical and non-technical stakeholders.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to demonstrate proficiency in handling outliers and deviations from standard assumptions.	3	2	2	1	2
 Students should be able to choose suitable robust models and algorithms for various types of data. 	3	3	2	3	2
3. Students should be capable to apply robust statistical methods to real-world problems.	2	3	3	2	3
 Students should be capable of interpreting results critically to draw meaningful conclusions and make data- driven decisions. 	1	2	3	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Introduction to Robustness: Concept of Robustness,	Classroom	1
	deviations from parametric models and estimation	Lecture and	
	theory, Classical Versus Robust Approaches to Statistics.	Discussion	
2-3	Robust Location and Dispersion Estimates, M- Estimates	Classroom	1, 2
	of Location with Known Scale, M- Estimates of Scale.	Lecture and	
		Discussion	

Week	Торіс	Teaching- Learning	Corresponding CLOs
		Strategy	
4	Simultaneous M- Estimates of Location and Scale,	Classroom	2, 3
	Numerical Computation of M-Estimates.	Lecture	
5-6	Influence Function, Breakdown Point, Gross-Error	Classroom	3
	Sensitivity, Local-Shift Sensitivity.	Lecture	
7-8	Balancing Robustness: Rejection Point, Maximum	Classroom	3, 4
	Asymptotic Bias; Balancing Robustness and Efficiency,	Lecture and	
	Identification of Outliers.	Discussion	
9	Robust Methods in Correlation and Regression:	Classroom	3, 4
	Robust Correlation Estimates, Linear Regression Models	Lecture and	
	with Fixed Predictors: Regression M- Estimates.	Discussion	
10	Models with Random Predictors: MM-Estimate, LMS-	Classroom	3, 4
	Estimate, S- Estimate, LTS Estimate, Tau Estimate.	Lecture	
11-12	Robustness in Statistical Testing: The Influence Function	Classroom	3, 4
	for Tests, Classes of Tests, Optimally Bounding the Gross-	Lecture and	
	Error Sensitivity,	Discussion	
13-14	Extending the Change-of-Variance Function to Tests,	Classroom	3, 4
	Lumbert's Approach, Eplett's Approach, M-Tests for a	Lecture and	
	Simple Alternative.	Discussion	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy			
CLO-1	Classroom Lecture, Interactive Group	Quizzes,	Oral	questio	ning,
CLO-2	Discussion, Multimedia Presentation	Assignments,	Class	tests	and
CLO-3		performance,	Present	tations,	and
CLO-4		Semester end	examinat	ions.	

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Huber (2009). Robust Statistics, 2nd Edition, John Wiley & Sons.
- ii. Maronna, R. A., Martin, R. D., Yohai, V. J., & Salibián-Barrera, M. (2019). Robust statistics: theory and methods (with R). John Wiley & Sons.

Supplementary Readings:

- i. Maronna, R. A., Martin, R.D., & Yohai, V.J. (2019). Robust Statistics: Theory and Methods, John Wiley & Sons.
- ii. Wilcox, R. R. (2023). A guide to robust statistical methods. Springer Nature.
- iii. Jureckova, J., & Picek, J. (2021). Robust statistical methods with R. 2nd Edition, Chapman and Hall/CRC.
- iv. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. & Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5213	Semiparametric Regression	Elective	3.0	100

This course is designed for more flexible modeling of data compared to purely parametric methods. It can handle a wide range of functional relationships between variables without making strict distributional assumptions. It provides the ability to address nonlinear relationships, handle high-dimensional data, and make predictions without rigid distributional assumptions. This course equips students with valuable analytical skills, fosters research advancements, and empowers data analysts to effectively model intricate relationships in data.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Semiparametric Regression. The specific objectives include:

- To develop a deep understanding of the concept of semiparametric regression.
- To learn how to select appropriate semiparametric models, assess model goodnessof-fit, and make informed choices about model complexity.
- To gain the skills to model and interpret nonlinear relationships between variables to practical problems using semiparametric regression.
- To apply semiparametric regression to practical problems in fields such as economics, epidemiology, and social sciences.

CLOs		PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will gain a comprehensive understanding	3	2	2	1	2
	of semiparametric regression.					
2.	Students will be able to apply appropriate model	3	3	2	3	2
	selection techniques to identify and justify the					
	choice of semiparametric models					
3.	Students will be skilled in effectively capturing	2	3	3	2	2
	complex data patterns and trends.					
4.	Students will be capable to applying	1	2	3	3	2
	semiparametric regression in various real-life					
	problems.					
5.	Students will be able to interpret the results of	1	2	2	3	3
	semiparametric regression models in a clear and					
	concise manner.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding		
		Learning	CLOs		
		Strategy	-		
1-2	Parametric and Nonparametric Regression:	Classroom	1		
	Review of parametric regression models (e.g., linear	Lecture and			
	regression), Introduction to nonparametric	Discussion			
	regression (e.g., kernel regression), Strengths and limitations of parametric and nonparametric				
	approaches.				
3	Penalized Splines: Penalized Spline Basics, Choosing	Classroom	1, 2		
	the Smoothing Parameter, Choosing the Basis Size,	Lecture and			
	Checking the Residuals	Discussion			
4	Mixed Model-based Penalized Splines, Variability	Classroom	2, 3		
	Brands, Flexible regression model, Fractional	Lecture and			
	polynomial function.	Discussion			
5-6	Hypothesis Testing and Bayesian Penalized Splines:	Classroom	3		
	Hypothesis testing in Semiparametric Regression,	Lecture and			
	Bayesian Penalized Splines, Choosing Between	Discussion			
	Different Penalized Spline Approaches, Penalized				
	Splines with Factor Effects.				
7-8	Generalized Additive Models: Generalized Linear	Classroom	3, 4		
	Models, Generalized Additive Models, Model	Lecture and			
	Selection, Extension to Vector Responses, Extension	Discussion			
	to Factor-by-Curve Interactions.				
9-10	Semiparametric Regression Analysis of Group	Classroom	4		
	Data: Additive Mixed Models, Models with Group-	Lecture and			
	Specific Curves, Marginal Models, Extension to Non-	Discussion			
	Gaussian Response Variables.				
11-12	Bivariate Function Extensions: Bivariate	Classroom	4, 5		
	Nonparametric Regression, Geoadditive Models,	Lecture and			
	Varying-Coefficient Models, Covariance Function	Discussion			
	Estimation. Estimating a Covariance Function with				
	Sparse Data.				
13-14	Robust and Quantile Semiparametric Regression:	Classroom	4, 5		
	Quantile Regression, Parameter estimation,	Lecture and			
	Asymptotic properties, Applications, Quantile	Discussion			
	Semiparametric Regression, Parameter estimation,				
	Applications. Local Polynomial Fitting, Kernel				
	Machines.				
CLOs	Teaching-Learning Strategy		Assessme	ent Stra	tegy
-------	-------------------------------------	-------	----------	-----------	--------------
CLO-1	Classroom Lecture, Interactive	Group	Quizzes,	Oral	questioning,
CLO-2	Discussion, Multimedia Presentation)	Assignme	ents, Cla	ss tests and
CLO-3			performa	ince, Pr	esentations,
CLO-4			and	Semest	ter end
CLO-5			examinat	ion.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

i. Harezlak J., Ruppert D. & Wand M. P. (2018): Semiparametric Regression with R, Springer.

Supplementary Readings:

- i. Ruppert, D., Wand, M.P., & Carroll, R.J. (2003). Semiparametric Regression. Cambridge University Press.
- ii. Yatchew, A. (2003). Semiparametric regression for the applied econometrician. Cambridge University Press.
- iii. Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric models, Berlin: Springer.
- iv. McCulloch, C. E., & Searle, S. R. (2004). Generalized, linear, and mixed models. John Wiley & Sons.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5214	Applied Stochastic Process	Elective	3.00	100
	and Stochastic Simulation			

This course is crucial for understanding and modeling the inherent randomness in various real-world systems. This field is pivotal in sectors like finance, where it aids in modeling market fluctuations, in engineering for reliability testing, and in telecommunications for network traffic analysis. By equipping students with the ability to model, analyze, and simulate stochastic processes, the course offers valuable tools for tackling complex, dynamic systems where uncertainty is a key factor.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Applied Stochastic Process and Stochastic Simulation. The specific objectives include:

- To understand fundamental concepts and methodologies in stochastic processes.
- To acquire skills in statistical inference and estimation techniques related to stochastic processes.
- To learn to apply stochastic models to analyze and solve problems in various fields.
- To gain proficiency in simulating stochastic processes, using tools like Monte Carlo simulation, to model and analyze complex systems.

	5 01 020		203		
CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to understand and apply					
concepts of both reducible and irreducible Markov	3	2	2	1	2
Chains, including their applications.					
2. Students will be able to develop skills in statistical					
inference related to Markov Chains, including	3	3	2	3	2
estimating transition probabilities.					
3. Students will be able to gain proficiency in					
analyzing and estimating parameters in queuing	2	3	3	2	3
models.					
4. Students will be able to understand and apply					
renewal theory and processes in practical	2	2	3	3	3
scenarios.					
5. Students will be able to acquire the ability to					
simulate various stochastic processes using	1	2	2	3	3
advanced techniques.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching- Learning Strategy	Corresponding CLOs
1-2	Markov Chains and Applications: Concept of Irreducible and Reducible Markov Chains. Limiting properties of Reducible Chains. Random Walk Model, The Gambler's Ruin Problem, Mean Time Spent in Transient State. Time Reversible Markov Chain, Markov Decision Process, Markov Chain Monte Carlo Methods, Hidden Markov Chains.	Classroom Lecture and Discussion	1
3-4	Estimation and Statistical Inference related to Finite Markov Chains: Maximum Likelihood Estimates of Transition Probabilities. Testing for a given Transition Probability Matrix, Stationarity of Transition Probability Matrix, Order of Markov Chain, First Order Markov Dependence.	Classroom Lecture and Discussion	1, 2
5	Estimation related to M/M/1 Queuing Model: Point and Interval estimates of Arrival Rate, Service Rate, Server Utilization Rate of an M/M/1 queuing model.	Classroom Lecture and Discussion	3
6	Renewal Process: Renewal Process in continuous time, Distribution of number of Renewals. Renewal Function, Renewal Density and Renewal Equation. Moments of Number of Renewals. Stopping Time and Wald's Equation. Convergence of average Renewal rate, Elementary Renewal Theorem and their applications.	Classroom Lecture and Discussion	4
7-8	Renewal Theory and Applications: Ordinary, Delayed and Equilibrium Renewal Process, Probability Generating Function of Renewal Process. Central Limit Theorem for Renewals. Renewal Reward Process, Regenerative Process, Two-Stage Renewal Process, Computation of Renewal Function.	Classroom Lecture and Discussion	4
9	Brownian Motion, Stationary Process and Time Series: Brownian Motion, Variations on Brownian Motion, White Noise. Second Order Process, Stationary and Weekly Stationary Process, Gaussian Process. Models of Time Series.	Classroom Lecture and Discussion	4
10-11	Branching Process: Meaning, Moments of Branching Process, Properties of Generating Function of Branching Process. Probability of Ultimate Extinction, Distribution of Total Number of Progeny, Conditional Limit Laws, Generalization of Classical Branching Process, Continuous Time Branching Process, Age Dependent Branching Process.	Classroom Lecture and Discussion	5

Week	Торіс	Teaching- Learning	Corresponding CLOs
		Strategy	
12-13	Social and Behavioral Process: Social Mobility & its	Classroom	5
	properties. Industrial Mobility for Labour.	Lecture	
	Educational Advancement, Labour Force Planning	and	
	and Management. Markov Model in Biological	Discussion	
	Sciences and Business Management.		
14	Stochastic Simulation: Analyzing Homogenous	Classroom	5
	Poisson Process, Non-homogenous Poisson Process,	Lecture	
	Markov Chain, Continuous Time Birth and Death	and	
	Model, Renewal Process, Branching Process,	Discussion	
	Multilevel Queuing System by Monte Carlo		
	Simulation.		

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive	Quizzes, Oral questioning, Assignments, Class
CLO-2	Group Discussion, Multimedia	tests and performance, Presentations, and
CLO-3	Presentation	Semester end examination.
CLO-4		
CLO-5		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Ross, S. M. (2023): Introduction to Probability Models, 13th edition, Academic Press, an imprint of ELSEVIER.
- ii. Medhi, J. (2009): Stochastic Process, 3rd revised edition, New Age International (P) Ltd., Publishers, New Delhi.

Supplementary Readings:

- i. Gallager, R. G. (2013). Stochastic processes: theory for applications. Cambridge University Press.
- ii. Bhat B R (2004): Stochastic Models, Analysis and Applications, New Age International (P) Ltd., Publishers, New Delhi.
- iii. Dobrow, R. P. (2016). Introduction to stochastic processes with R. John Wiley & Sons.
- iv. Medhi, J. (2006): Stochastic Models in Queuing Theory, 2nd edition, Academic Press, an imprint of ELSEVIER.
- v. Minh, D. L. (2001): Applied Probability Models, Thomson Duxbury, California.
- vi. Prabhu, N. U. (1980): Stochastic Process, Springer Varleg, New York.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5215	Advanced Design of Experiments	Elective	3.00	100

This course is essential for delving into the complexities of experimental planning and analysis in modern research and industrial applications. It aims to equip researchers and practitioners with the skills to efficiently design experiments that can handle multiple variables and their interactions, optimize responses, and draw reliable conclusions while minimizing resource usage. The course is particularly beneficial in fields where experimentation precision and accuracy are paramount.

2. Course Objectives:

This course is primarily designed to provide students with a fundamental understanding of Advanced Design of Experiment. The specific objectives include:

- To acquire knowledge in advanced design of experiments methodologies to address complex research questions efficiently.
- To Learn to apply statistical tools for analyzing experimental data, focusing on model assumptions, diagnostics, and resolving issues from violated assumptions.
- To gain expertise in optimizing experimental designs for accuracy and efficiency.
- To build practical skills in planning, conducting, and analyzing controlled experiments, with a focus on applying theoretical knowledge to real-world problems.

	CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1.	Students will be able to apply linear estimation					
	and hypothesis testing in experimental data	3	2	2	1	2
	analysis.					
2.	Students will demonstrate the ability to					
	diagnose model fit issues and implement	3	3	2	3	2
	remedial measures.					
3.	Students will gain the skill to design fractional					
	factorial experiments and understand the	2	3	3	2	2
	implications of confounding and aliasing in these	Z	5	5	Z	Z
	designs.					
4.	Students will learn to effectively use and analyze	1	2	3	3	3
	two-level and multi-level factorial designs.	Т	Z	5	5	5
5.	Students will be able to design and analyze					
	complex experimental setups such as split-split-	1	3	3	3	3
	plot and balanced incomplete block designs.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
1	Linear Estimation: Linear Hypothesis, Model	Strategy Classroom	1
-	Assumptions and Diagnostics, Remedial measures	Lecture and	1
	for violated assumptions.	Discussion	
2	General Principles in Controlled Experiments,	Classroom	1, 2
	Strategies in Planning Experimental Programs,	Lecture and	,
	Statistical Power and Sample Size Determination.	Discussion	
3-4	Fractional Factorial Design: Concept of Fractional	Classroom	3
	Factorial Designs, Analysis for Fractional Factorial	Lecture and	
	Designs, Optimization and Efficiency in Fractional	Discussion	
	Factorial Designs, Confounding, Principles of		
	confounding and aliasing.		
5	Two-Level Fractional Factorial Design:	Classroom	4
	Introduction to Two-Level Fractional Factorial	Lecture and	
	Designs, Analysis of Two-Level Fractional Factorial	Discussion	
	Designs, Hands-on analysis using statistical		
	software		
6	Three-Level and Mixed-Level Factorial:	Classroom	4
	Introduction to Three-Level Factorial Designs,	Lecture and Discussion	
	Mixed-Level Factorial Designs, Statistical Analysis	Discussion	
	for Three-Level and Mixed-Level Designs		2.1.5
7-8	Split-Split-Plot Design: Overview of experimental	Classroom Lecture and	3, 4, 5
	designs with a focus on split-split-plot structures,	Discussion	
	Principles of constructing split-split-plot designs,	21000001011	
0.10	Analysis of Split-Split-Plot Designs	Classroom	4 5
9-10	Balanced Incomplete Block Design (BIBD): Inter	Classroom Lecture and	4 ,5
	and Intra-Block Analysis, Missing Observation in BIBD.	Discussion	
11-12	Missing Plot, Galois Field and Finite Projective	Classroom	4, 5
11-12	Geometry and its Application, Groups of	Lecture and	4, 5
	Experiments, Optimality of Design.	Discussion	
13-14	Response Surface Methods, Method of Steepest	Classroom	5
	Ascent Analysis of Second-Order Response	Lecture and	
	Surface Design, Palatability, Carraraites in	Discussion	
	Factorial Experiments.		
			1

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations,
CLO-4		and Semester end
CLO-5		examination.

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

i. Montgomery, D. C. (2020): Design and Analysis of Experiments, 10th Edition, John Wiley and Sons, New York.

Supplementary Readings:

- i. Lawson, J. (2014). Design and Analysis of Experiments with R. CRC Press.
- ii. Das, M. N. and Giri, N. C. (1997): Design and Analysis of Experiments, 2nd Edition, New International (P) Ltd., India
- iii. Dean, A., Voss, D. and Draguljić, D. (2017). Design and analysis of experiments. New York, NY: Springer New York.
- iv. Kempthorne, O. (1952): The Design and Analysis of Experiments, Wiley, New York.
- v. Graybill, F. A. (1961): An Introduction to Linear Statistical Models, Vol. I, Mcgrow-Hill, New York.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5216	Multivariate and Clustered	Elective	3.0	100
	Survival Data Analysis			

This course is designed to equip students with the tools to analyze complex, interrelated survival data. The knowledge gained from this course can facilitate the exploration of the impact of various covariates and cluster effects on survival outcomes, thereby providing insights that can inform more effective public health interventions and policies. This course fosters the development of advanced analytical skills that are increasingly in demand in both academic and industrial research settings.

2. Course Objectives:

This course is primarily designed to teach students advanced data visualization techniques and their applications. The specific objectives include:

- To understand the principles and techniques involved in analyzing multivariate survival data.
- To develop the necessary skills and knowledge to analyze survival data that exhibit clustering.
- To enable to apply various statistical models in the context of analyzing multivariate and clustered survival data in real-world scenarios.
- To develop the ability to interpret and communicate the results of multivariate and clustered survival data analyses effectively.

3.	Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs
----	---

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to gain proficiency in a range	3	2	2	1	2
of advanced multivariate survival analysis					
techniques.					
2. Students will be able to effectively handle and	3	3	2	3	2
analyze clustered survival data.					
3. Students will be able to able to interpret the results	1	2	3	3	2
of multivariate and clustered survival data analyses					
in the context of various research questions or					
hypotheses.					
4. Students will be able to apply the knowledge gained	1	2	2	3	3
from the course to practical research scenarios and					
understand the implications of multivariate and					
clustered survival data analysis in various fields.					

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Topic	Teaching-	Corresponding
	•	Learning	CLOs
		Strategy	
1	Multivariate Survival Data: Definition of	Classroom	1
	multivariate survival data. Examples and	Lecture and	
	scenarios where multivariate survival analysis is	Discussion	
	applicable.		
2-3	Bivariate Survival Analysis: Techniques for	Classroom	1
	analyzing the joint survival of two outcomes.	Lecture and	
	Copulas and their application in bivariate survival	Discussion	
	analysis.		
4-5	Accelerated Failure Time Models: Concept of		1, 4
	accelerated failure time models. Comparison		
	with proportional hazards models. Formulation	Discussion	
	of the accelerated failure time model equation. Maximum likelihood estimation in AFT models.		
	Model Assumptions and Diagnostics,		
6	Weibull AFT Model: In-depth exploration of the	Classroom	1, 4
0	Weibull accelerated failure time model.		±, +
	Applications and interpretation. Exponential AFT	Discussion	
	Model, etc.		
7-8	Clustered Survival Data: Definition of clustered	Classroom	2
	or correlated survival data. Understanding intra-	Lecture and	
	cluster correlation, Analysis of clustered survival	Discussion	
	data.		
9-10	Frailty Models: Introduction to frailty models in	Classroom	2, 3
	the context of clustered survival data.	Lecture and	
	Incorporating random effects to account for	Discussion	
	clustering.		
11	Handling Time-Dependent Covariates:	Classroom	1, 4
	Techniques for incorporating time-dependent		
	covariates in survival models. Impact on risk	Discussion	
12	estimates.		
12	Meta-Analysis of Survival Data: Approaches for		4
	meta-analysis of survival data from multiple	Lecture and Discussion	
	studies. Combining results and addressing heterogeneity.		
13-14	Time-to-Event Analysis in Clinical Trials:	Classroom	4
	Application of multivariate and clustered survival	Lecture and	
	analysis in the context of clinical trials. Regulatory	Discussion	
	considerations.		

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations,
CLO-4		and Semester end
		examination.

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings

- i. Lee, E. T. and Wang, J. W. (2013): Statistical Methods for Survival Data Analysis, 4th Edition, Wiley Series, New York.
- ii. Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons.
- iii. Hosmer Jr, D. W., Lemeshow, S., & May, S. (2008). Applied survival analysis: regression modeling of time-to-event data, John Wiley & Sons.

Supplementary Readings:

- i. David, G. K., & Mitchel, K. (2012). Survival analysis: a Self-Learning text. Springer
- ii. O'Quigley, J. (2021). Survival Analysis: Proportional and Non-Proportional Hazards Regression, Springer International Publishing.
- iii. Johnson, R. A. and Wichern, D. W. (2007): Applied Multivariate Statistical Analysis, 6th Edition, Pearson Education, Asia
- ii. Newman, S. (2001): Biostatistical Methods in Epidemiology, Wiley, New York.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0610-5217	Advanced Data Visualization	Core	3.0	100

This course is designed to meet the growing need for data professionals who can extract meaningful insights from complex data, communicate those insights effectively, and contribute to data-driven decision-making in today's data-centric world. It equips students with valuable skills that are applicable in a variety of professional contexts and contributes to their personal and career development.

2. Course Objectives:

This course is primarily designed to learn advanced data visualization techniques and their applications. The specific objectives include:

- To understand advanced data visualization techniques and perform in-depth data analysis and effectively visualize complex datasets.
- To communicate data insights and findings effectively, using visual storytelling and narrative techniques to make data more accessible and engaging.
- To apply advanced data visualization skills to real-world scenarios and projects.
- To gain knowledge and skills to create interactive data visualizations interactively and gain deeper insights.

5. Course Learning Outcomes (CLOS) and Mapping of CLOS with PLOS					
CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to create interactive data					
visualizations and dashboards using relevant tools	3	2	2	1	3
and libraries.					
2. Students will be able to build and apply advanced					
chart types, including heatmaps and Sankey	3	3	2	3	2
diagrams.					
3. Students will be able to visualize geographic and	2	3	3	3	3
spatial data effectively using advanced techniques.	2	5	5	5	5
4. Students will be able to implement network and					
time-series data visualizations, capturing dynamic	1	2	3	3	3
relationships and trends.					
5. Students will be able to handle high-dimensional					
data and integrate machine learning techniques	1	2	2	3	3
for insightful data storytelling.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Interactive Data Visualization: Introduction to	Classroom	1
	interactive data visualization, Tools, and libraries	Lecture and	
	for creating interactive visualizations, Creating	Discussion	
	interactive dashboards.		
3-4	Advanced Chart Types: Exploring specialized chart	Classroom	2
	types (e.g., heatmaps, chord diagrams, Sankey	Lecture and	
	diagrams), Use cases and scenarios for advanced	Discussion	
	chart types, building advanced charts using		
	visualization libraries.		
4	Spatial and Geographic Data Visualization:	Classroom	3
	Visualizing geographic data with choropleth maps,	Lecture and	
	Advanced techniques for geospatial visualization,	Discussion	
	Geospatial data analysis and visualization tools.		
5-6	Network Visualization: Understanding network	Classroom	4
	visualization and its applications, Creating network	Lecture and	
	graphs and visualizing connections.	Discussion	
7-8	Time-Series Data Visualization: Time-series data	Classroom	4
	visualization techniques, Visualizing temporal	Lecture and	
	trends, seasonality, and anomalies, Real-time data	Discussion	
	visualization.		
9	Multidimensional Data Visualization: Dealing with	Classroom	5
	high-dimensional data, Parallel coordinates, and	Lecture and	
	other multidimensional visualization techniques.	Discussion	
10	Dimensionality reduction for visualization:		5
	Introduction to High-Dimensional Data,	Lecture and	
	Multidimensional Scaling (MDS), Principal	Discussion	
	Component Analysis (PCA), Linear Discriminant		
	Analysis (LDA).		
11	Advanced Data Mapping: Mapping techniques for	Classroom	5
	non-geographic data, Custom mapping, and data	Lecture and	
	overlays.	Discussion	
12	Autoencoders and Neural Networks: Introduction	Classroom	5
	to autoencoders for nonlinear dimensionality	Lecture and	
	reduction. Training autoencoders and choosing	Discussion	
	architectures. Applications and comparison with		
	traditional methods.		

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
13	Machine Learning-Driven Visualizations: The role	Classroom	5
	of machine learning in data visualization, Automatic	Lecture and	
	data visualization using machine learning,	Discussion	
	Enhancing data exploration with ML-driven		
	techniques.		
14	Storytelling with Data: Effective data storytelling	Classroom	5
	techniques, creating data narratives and	Lecture and	
	infographics, communicating insights to a non-	Discussion	
	technical audience, Exploring advanced		
	visualization tools and libraries.		

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy			
CLO-1	Classroom Lecture, Interactive Gr	oup	Quizzes, Oral questioning,		
CLO-2	Discussion, Multimedia Presentation		Assignments, Class tests and		
CLO-3			performance, Presentations,		
CLO-4			and Semester end		
CLO-5			examination.		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Iliinsky, N. & Steele, J. (2011). Designing Data Visualizations, O'Reilly Media.
- ii. Murray, S. (2013). Interactive Data Visualization for the Web: An Introduction to Designing with D3. O'Reilly Media.

Supplementary Readings:

- i. Rahman, A., Abdulla, F., & Hossain, M. M. (2024). Scientific Data Analysis with R: Biostatistical Applications. Chapman & Hall/CRC Press.
- ii. Rocchini, C., Marchiori, E., & Guadagnoli, A. (2019). Advanced Data Visualization, Springer.
- iii. Kirk, A. (2019). Data visualisation: A handbook for data driven design. 2nd Edition, SAGE Publications Ltd.
- iv. Camm, J.D., Cochran, J. J., Fry, M. J., Ohlmann, J. W. (2021). Data visualization: exploring and explaining with data, Cengage Learning.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Mark	s:
0610-5218	Artificial Intelligence	Elective	3.0	100	

This course is designed to equip students with a profound understanding of the interplay between statistics and data science, acknowledging that these fields are integral to making sense of complex data sets in today's data-driven world. By delving into statistical modeling, data visualization, and advanced analytical methodologies, students will develop the necessary skills to derive meaningful insights from diverse data sources, thereby enabling informed decision-making in various domains.

2. Course Objectives:

The primary objective of this course is to focus on understanding Artificial Intelligence and its application. The specific objectives include:

- To acquire a comprehensive understanding of the fundamental concepts, theories, and methodologies basis of artificial intelligence.
- To gain practical experience in implementing AI algorithms and to understand how AI is utilized in real-world scenarios.
- To cultivate critical thinking skills by examining the strengths and limitations of various AI approaches
- To understand the importance of ethical considerations in the development and deployment of AI systems.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be able to understand the history	3	2	2	1	2
and foundational concepts of Artificial					
Intelligence.					
2. Students will be able to analyze AI agents'	3	3	2	3	2
interactions with environments and apply					
rationality principles.					
3. Students will be able to master various AI	2	3	3	2	2
problem-solving techniques, including search					
strategies and heuristic functions.					
4. Students will be able to gain knowledge in	1	2	3	3	2
adversarial search, knowledge-based reasoning,					
and first-order logic.					
5. Students will be able to learn probabilistic	1	3	3	3	3
reasoning and Bayesian networks for decision-					
making in fields like healthcare and finance.					

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
	•	Learning	CLOs
		Strategy	
1	Introduction: Introduction to AI, foundation, and	Classroom	1
	history of Al.	Lecture and	
		Discussion	
2	Agents: Agents and Environment, The concept of	Classroom	2
	rationality, the nature of environment, and	Lecture and	
	structure of agents.	Discussion	
3	Problem Solving – Search: Problem solving agents,		3
	example problems, searching for solutions,		
	uniformed and informed search strategy, and		
	heuristic functions.		
4	Adversarial Search: Games, Alpha-Beta Pruning,	Classroom	3
	Imperfect real-time decision, Stochastic games,	Lecture and	
	partially observed and state-of-the-art games,	Discussion	
	alternative approaches.		
5-6	Knowledge and Reasoning: Knowledge-based	Classroom	4
	agents, the Wumpus world, Logic, Propositional	Lecture and	
	logic, Propositional theorem proving, effective	Group work	
	propositional model checking, Agents based on		
	propositional logic.		
7-8	First Order Logic Reasoning: Representation	Classroom	4
	revisited, syntax and semantics of first-order logic,	Lecture and	
	using first-order logic, Knowledge engineering in	Group work	
	first-order logic, inference in first-order logic.		
9	Uncertainty in AI and Expert System: Quantifying	Classroom	4
	uncertainty, Probabilistic Reasoning, Neural Fuzzy	Lecture and	
	Expert System	Group work	_
10-11	Uncertainty in AI and Bayesian Network: Learning	Classroom	5
	Bayesian Network structures from data. Expert	Lecture and	
	elicitation and knowledge engineering for BNs.	Group work	
	Handling continuous and discrete variables in BNs.		
	Modeling temporal relationships with Dynamic		
12.42	Bayesian Networks.	Classes	F
12-13	Decision Making with Bayesian Networks: Utility theory and decision nodes. Influence diagrams and	Classroom	5
	decision networks. Incorporating decision-making	Lecture and	
	in BN models. Case studies in healthcare, finance,	Group work	

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
	and natural language processing, Real-world projects applying BN inference.		
14	Dynamic Probabilistic Models: Statistical Learning,	Classroom	5
	learning with incomplete data, learning with hidden	Lecture and	
	data.	Group work	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and
CLO-3		performance, Presentations,
CLO-4		and Semester end examination.
CLO-5		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Russell, S.J. and Norvig, P. (2021). Artificial Intelligence: A Modern Approach, 4th Edition, Pearson, London.
- ii. Poole, D.L. and Mackworth, A.K. (2023). Artificial Intelligence: foundations of computational agents. 3rd Edition, Cambridge University Press.
- iii. Murphy, K.P. (2012). Machine learning: a probabilistic perspective. MIT Press.

Supplementary Readings:

- Bishop, C.M. (2006). Pattern Recognition and Machine Learning by Christopher
 M. Bishop. Springer Science+ Business Media, LLC.
- ii. Bengio, Y., Goodfellow, I. and Courville, A. (2017). Deep learning (Vol. 1). Cambridge, MA, USA: MIT Press.

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0912-5219	Epidemiological Modelling for	Elective	3.0	100
	Public Health			

This course is designed to equip students with the skills to analyze disease patterns, assess risk factors, and measure the impact of illnesses. Through this modeling, future public health professionals can develop effective strategies for disease prevention and control and make informed decisions on healthcare policies and resource allocation. This knowledge is fundamental in addressing current and emerging health challenges, ensuring a proactive and evidence-based approach to public health management.

2. Course Objectives:

The primary objective of this course is to focus on understanding the issues in public health and application of epidemiological modelling for communicable disease control. The specific objectives include:

- To understand the basic concept of public health and public health approaches.
- To understand the bias in epidemiological studies.
- To learn the dynamics of disease transmission and modelling infectious disease.
- To apply techniques for designing and evaluating prevention programs.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students will be competent in using statistical					
techniques to evaluate disease patterns, pinpoint	3	2	2	1	2
risk factors, and derive meaningful inferences from	5	Z	Z	T	Z
epidemiological data.					
2. Students will gain the ability to organize and carry					
out epidemiological research techniques for	3	3	2	3	2
gathering data.					
3. Students will learn how to assess the effectiveness					
of public health interventions through statistical	2	3	3	2	2
analysis.					
4. Students will be proficient in effectively					
communicating epidemiological results to diverse	2	3	3	3	3
audiences, bridging the gap between data analysis		5	5	5	5
and public health action.					

4. Course plan specifying content, CLOs, co-curricular activities (if any), teaching-learning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
1	Concept of Health: Concept of health, Dynamics,	Classroom	1
	Measurement of health, Determinants of health,	Lecture and	
	Measuring health Impact.	Discussion	
2	Introduction to Public Health and Epidemiology:	Classroom	1, 2
	Overview of public health and its significance.	Lecture and	
	Public Health Approaches. Core Functions of Public	Discussion	
	Health, Steps in Public Health System. Bangladesh		
	Public Health System and Achievements.		
	Epidemiolocal indicators, Objectives, Branches and		
	Role of epidemiology in public health.		
3	Concept of Disease: Concept of disease, States of	Classroom	2
	disease in an individual, Concept of disease	Lecture and	
	occurrence, factors causing human disease.	Discussion	
4	Measuring Burden of Disease: Concept, Mortality	Classroom	3
	& Morbidity Measures. Disability Adjusted Life	Lecture and	
	Years (DALY): Concept and Necessity of Measuring	Discussion	
	DALY, Measurement of DALY, Problems in DALY.		
	Quality of Life Measures, Economic Measures.		
5	Types of Disease and Dynamic of Disease	Classroom	2,3
	Transmission: Types of disease, Infectious and	Lecture and	
	noninfectious disease, Genetic transmission and	Discussion	
	other (e.g., blood, saliva, etc.) transmission disease.		
	Modes of disease transmission.		
	Brief Introduction to Dengue, COVID-19, NIPAH,		
	Ebola, STI, HIV/AIDS, Diabetes, Mellitus,		
	Tuberculosis, Diarrhea and Water Borne Diseases,		
	Cardiovascular Disease, Cancer. Modes of		
	transmission of each transmission disease. Risk		
	factors and Prevention Strategy.		
6	Modeling Infectious Diseases: Introduction to	Classroom	4
	models used in modelling infectious disease,	Lecture and	
	Assumptions.	Discussion	
	The SIR Model: Basic Model Dynamics, Estimating		
	the parameters of SIR model. Concept of Basic and		
	Effective Reproduction Number, Herd Immunity,		

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
	Force of Infection. Equilibrium points in SIR model.		
	Limitations of the basic SIR model.		
7	Modifications and Extensions of SIR Model: Model	Classroom	4
	Dynamics of SIRS model, SEIR model. Vaccination in	Lecture and	
	the Basic Model and Effective Vaccination	Discussion	
	Coverage. SIR models with vital dynamics.		
8	Disease Specific Modelling: Modeling for Dengue,	Classroom	3, 4
	Nipah virus, Tuberculosis, HIV/AIDS, STI.	Lecture and	
	Epidemiological Models used for modeling	Discussion	
	infectious disease in Bangladesh.		
9-10	Causal Inference from Epidemiological Study:	Classroom	3, 4
	Concept of Bias. Confounding Effect, Identifying	Lecture and	
	Confounders, Confounding. Methods for	Discussion	
	controlling Confounding: Method of restriction,		
	pros and cons of restriction as a means to control		
	for confounding, restriction to control for		
	confounding-by-indication; Method of		
	stratification, stratum-specific associations;		
	Method of matching; Randomization.		
11	More on Causal Inference:	Classroom	4
	Interaction: Concept, Identifying Interaction, and	Lecture and	
	its impact.	Discussion	
	Effect Modification: Concept of effect		
	modification, synergy between exposure variables.		
	Interaction vs. effect modification vs. confounding.		
	Evaluation of effect modification, effect		
	modification in clinical research.		
12	Impact of Environmental and Genetic Factors in	Classroom	2, 3, 4
	Disease Causation: Introduction to environmental	Lecture and	
	health and its impact on public health. Importance	Discussion	
	of studying environmental ang genetic aspects for		
	Epidemiological modelling. Interaction between		
	Genetic and Environmental Risk Factors.		
13-14	Application of Epidemiology in Public Health:	Classroom	4
	Overview disease prevention and control. Types of	Lecture and	
	prevention approaches. Designing and	Discussion	
	implementing effective prevention programs.		

Week	Торіс	Teaching-	Corresponding
		Learning	CLOs
		Strategy	
	Evaluating prevention programs in terms of		
	epidemiological impacts (Lives saved, Infections		
	Averted, DALYs saved) and cost-effectiveness		
	analysis (Cost per lives saved, Infections averaged,		
	Cost-Benefit Analysis). Influence of epidemiological		
	research on public health policy.		

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy		
CLO-1	Classroom Lecture, Interactive Group	Quizzes, Oral questioning,		
CLO-2	Discussion, Multimedia Presentation	Assignments, Class tests and		
CLO-3		performance, Presentations, and		
CLO-4		Semester end examinations.		

6. Assessment and Evaluation

As per the process outlined in Part D.

7. Learning Materials

Recommended Readings:

- i. Celentano, D.D. & Szklo, M. (2018). Gordis Epidemiology, 6th Edition, Elsevier, Amsterdam.
- ii. Martcheva, M. (2015). An Introduction to Mathematical Epidemiology, Springer New York, NY.
- iii. Caron, R. M. (2022). Population health, epidemiology, and public health: management skills for creating healthy communities. Health Administration Press.

Supplementary Readings:

- Hens, N., Shkedy Z., Aerts, M., Faes, C., Damme, P. V. and Beutels, P., (2012): Modeling Infectious Disease Parameters Based on Serological and Social Contact Data, Springer Science Plus Business Media New York.
- ii. Kenneth, J. and Rothman, S. G. (2012): Modern Epidemiology, 3rd Edition, LWW.

LAB/Practical Courses for Semester 2

Course Code:	Course Title:	Course	Credit	Total
0542-5221	LAB - Advanced Classical and Bayesian	Type: LAB	Value: 1.0	Marks: 100
	Inference			

1. Rationale of the Course:

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5201: Advanced Classical and Bayesian Inference" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct analysis of Advanced Classical and Bayesian Inference.	1	2	1	3	3
2. Students should be able to apply Advanced Classical and Bayesian Inference techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive Workshops,	
	course "0542-5201:	Hands-on Coding Sessions, Case Studies,	1 7 7
	Advanced Classical and	Group Discussions, Project-Based	1, 2, 3
	Bayesian Inference".	Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy		
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,		
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and		
CLO-3	Group Discussions, Project-Based	performance, Presentations, and		
	Learning.	Semester end examination.		

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0610-5222	LAB – Deep Learning	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0610-5202: Deep Learning" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Deep Learning analysis.	1	2	1	3	3
2. Students should be able to apply Deep Learning techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Wee	Topic	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical course "0610-5202: Deep Learning".	Lab Exercises, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project-Based Learning.	1, 2, 3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5223	LAB - Incomplete Data Analysis	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5211: Incomplete Data Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- 🔋 To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Incomplete Data Analysis.	1	2	1	3	3
2. Students should be able to apply Incomplete Data Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0542-5211:	Workshops, Hands-on Coding	1 7 7
	Incomplete Data	Sessions, Case Studies, Group	1, 2, 3
	Analysis".	Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value: 1.0	Total Marks:
0542-5224	LAB – Robust Statistics	LAB		100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5212: Robust Statistics" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- 🔮 To analyze data using statistical tools that are learned in the theoretical course.
- 🕴 To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized					
statistical software, such as R, Python, or SPSS, to	1	2	1	3	3
conduct Robust Statistical analysis.					
2. Students should be able to apply Robust Statistics					
Analysis techniques to real-world research and	1	3	1	3	3
industry problems.					
3. Students will learn how to make a scientific report	1	2	1	2	2
based on statistical results.	T	3	T	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0542-5212:	Workshops, Hands-on Coding	1, 2, 3
	Robust Statistics".	Sessions, Case Studies, Group	1, 2, 3
		Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5225	LAB - Semiparametric Regression	LAB	Value: 1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5213: Semiparametric Regression" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs		PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized					
statistical software, such as R, Python, or SPSS, to	1	2	1	3	3
conduct Semiparametric Regression analysis.					
2. Students should be able to apply Semiparametric					
Regression analysis techniques to real-world	1	3	1	3	3
research and industry problems.					
3. Students will learn how to make a scientific report	1	2	1	2	2
based on statistical results.	L L	3	T	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0542-5213:	Workshops, Hands-on Coding	1, 2, 3
	Semiparametric	Sessions, Case Studies, Group	1, 2, 5
	Regression".	Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5226	LAB - Applied Stochastic Process	LAB	Value : 1.0	100
	and Stochastic Simulation			

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5214: Applied Stochastic Process and Stochastic Simulation" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Applied Stochastic Process and Stochastic Simulation analysis.	1	2	1	3	3
2. Students should be able to apply Applied Stochastic Process and Stochastic Simulation Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding
			CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0542-5214:	Workshops, Hands-on Coding	
	Applied Stochastic	Sessions, Case Studies, Group	1, 2, 3
	Process and Stochastic	Discussions, Project-Based Learning.	
	Simulation"		

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit	Total Marks:
0542-5227	LAB - Advanced Design of Experiment	LAB	Value: 1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5215: Advanced Design of Experiment" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Advanced Design of Experiment analysis.	1	2	1	3	3
2. Students should be able to apply Advanced Design of Experiment Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0542-5215:	Workshops, Hands-on Coding	1, 2, 3
	Advanced Design of	Sessions, Case Studies, Group	1, 2, 5
	Experiment".	Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0542-5228	LAB - Multivariate and	LAB	1.0	100
	Clustered Survival Data Analysis			

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0542-5216: Multivariate and Clustered Survival Data Analysis" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- 🛞 To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Multivariate and Clustered Survival Data analysis.	1	2	1	3	3
2. Students should be able to apply Multivariate and Clustered Survival Data Analysis techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0542-5216:	Workshops, Hands-on Coding	
	Multivariate and	Sessions, Case Studies, Group	1, 2, 3
	Clustered Survival Data	Discussions, Project-Based	
	Analysis".	Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	arning Strategy Assessment Strategy		
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,		
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and		
CLO-3	Group Discussions, Project-Based	performance, Presentations,		
	Learning.	and Semester end examination.		

6. Assessment and Evaluation

Course Code:	Course Title:	Course	Credit	Value:	Total Marks:
0610-5229	LAB - Advanced Data Visualization	Type: LAB	1.0		100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0610-5217: Advanced Data Visualization" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- 🛞 To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Advanced Data Visualization.	1	2	1	3	3
2. Students should be able to apply Advanced Data Visualization techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical	Lab Exercises, Interactive	
	course "0610-5217:	Workshops, Hands-on Coding	1, 2, 3
	Advanced Data	Sessions, Case Studies, Group	1, 2, 5
	Visualization".	Discussions, Project-Based Learning.	

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy Assessment Strategy		
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,	
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and	
CLO-3	Group Discussions, Project-Based	performance, Presentations,	
	Learning.	and Semester end examination.	

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0610-5230	LAB - Artificial Intelligence	LAB	1.0	100

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0610-5218: Artificial Intelligence" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- 🛞 To analyze data using statistical tools that are learned in the theoretical course.
- To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
1. Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Artificial Intelligence analysis.	1	2	1	3	3
2. Students should be able to apply Artificial Intelligence techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	As per the theoretical course "0610-5218: Artificial Intelligence".	Lab Exercises, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project-Based Learning.	1, 2, 3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy		
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,		
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and		
CLO-3	Group Discussions, Project-Based	performance, Presentations,		
	Learning.	and Semester end examination.		

6. Assessment and Evaluation

Course Code:	Course Title:	Course Type:	Credit Value:	Total Marks:
0912-5231	LAB – Epidemiological	LAB	1.0	100
	Modelling for Public Health			

This course is designed to solve some practical problems by using statistical tools that are learned in the theoretical course "0912-5219: Epidemiological Modelling for Public Health" by using computer programming and statistical software.

2. Course Objectives:

The major objectives of this course include:

- To analyze data using statistical tools that are learned in the theoretical course.
- Solution To make a scientific report based on practical problems.

3. Course Learning Outcomes (CLOs) and Mapping of CLOs with PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
 Students should be able to use specialized statistical software, such as R, Python, or SPSS, to conduct Epidemiological Modelling analysis for Public Health. 	1	2	1	3	3
2. Students should be able to apply Epidemiological Modelling techniques to real-world research and industry problems.	1	3	1	3	3
3. Students will learn how to make a scientific report based on statistical results.	1	3	1	3	3

4. Course plan specifying content, CLOs, co-curricular activities (if any), teachinglearning, and assessment strategy mapped with CLOs

Week	Торіс	Teaching-Learning Strategy	Corresponding CLOs
1-14	Epidemiological	Lab Exercises, Interactive Workshops, Hands-on Coding Sessions, Case Studies, Group Discussions, Project-Based Learning.	1, 2, 3

5. Mapping CLOs with the Teaching-Learning & Assessment Strategy

CLOs	Teaching-Learning Strategy	Assessment Strategy
CLO-1	Lab Exercises, Interactive Workshops,	Quizzes, Oral questioning,
CLO-2	Hands-on Coding Sessions, Case Studies,	Assignments, Class tests and
CLO-3	Group Discussions, Project-Based	performance, Presentations,
	Learning.	and Semester end examination.

6. Assessment and Evaluation

Part D Grading, Evaluation & Other Operational Requirements

1. Related Operational Requirements

a.	Total weeks in a semester	_	26 weeks.
b.	Total class-weeks in a semester	-	14 weeks.
c.	Classes per week:For 3-credit Theoretical courseFor 1-credit LAB/practical course	-	2 classes. 1 class.
d.	Duration of each class:For 3-credit Theoretical courseFor 1-credit LAB/practical course	-	1 ½ hours. 2 hours.
e.	Total classes:For 3-credit Theoretical courseFor 1-credit LAB/practical course	-	28 classes. 14 classes.
f.	Total marks assigned to a course	_	100 marks.

The Department of Statistics and Data Science runs two semesters a year and gets 14 weeks to complete the required classes. A Semester End Examination (SEE) shall be held at the end of each Semester. Students shall get two weeks of preparation leave before SEE. The key operational requirements to run the program can be summarized as follow:

SI. #	Operational requirements	Master's by	Master's by Mixed					
		Coursework (1 year)	Mode (1.5 years)					
Requi	Requirements to complete the program							
1	Semesters per year	2	2					
2	Total semesters required	2	3					
Requi	Requirements to run a semester-based program							
3	Total class weeks in a semester	14	14					
4	Preparation leaves before SEE (in weeks)	3	3					
5	Duration of SEE (in weeks)	5	5					
6	Semester break (in weeks)	4	4					

Table 1: Basic Operational Requirements

2. Grading Criteria

The Grading Scale, Grades, Grade Point Average (GPA), Cumulative Grade Point Average (CGPA), Course Withdrawal, Incomplete (I) courses, Retake, Grade Improvement, Dropout, etc. are set as per the JU Examination Ordinance.

Numerical Grade	Grade	Grade Point
80% and above	A+	4.00
75% to less than 80%	А	3.75
70% to less than 75%	A-	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	В	3.00
55% to less than 60%	В-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00
Incomplete		0.00

Table 2: Grading system: Existing JU and UGC grading system

3. Evaluation System for Theory Courses

The Department of Statistics and Data Science adopts a framework for the assessment of its students as advised in the UGC's OBE guideline. Marks of each course is 100 marks. The assessment pattern of the Department of Statistics and Data Science comprises - Continuous Internal Evaluation (CIE), and Semester End Examination (SEE).

- Continuous Internal Evaluation (CIE) carries 40 Marks.
- Semester End Examination (SEE) carries 60 Marks.

Individual students are evaluated based on the following criteria with the following marks distribution:

SI. #	Assessment Techniques	Marks (%)					
Contin	Continuous Internal Evaluation (CIE)						
1	Class Tests	20%					
2	Assignment	5%					
3	External Participation in Curricular/Co-curricular Activities /Presentation of assignment, etc.	5%					
4	(i) Quizzes	5%					
4	(ii) Attendance	5%					
Semes	Semester End Examination (SEE)						
5	Semester End Examination	60%					
	Total	100%					

Table 3: Marks distribution of theor	v courses with d	lifferent assessment techniques	5
	y courses with a	and assessment teeningaes	

3.1 Assessment Pattern

The assessment of students under each course follows the **Outcome Based Evaluation (OBE)** system and in accordance with the **Bloom's Taxonomy** as adopted by the UGC of Bangladesh. Bloom's taxonomy is a hierarchical classification system used to define and distinguish different levels for the students in terms of Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating, as follows:

Figure 1: Using Bloom's Taxonomy

3.2 Continuous Internal Evaluation (CIE) for Theory Courses – 40 Marks

The students are continuously evaluated throughout the semester by adopting several assessment methods, e.g., class test, assignment, quizzes /class participation/ attendance and external participation in curricular/co-curricular activities. Each assessment method of CIE follows the following marks distribution in accordance with the Bloom's Taxonomy:

Bloom's	Tests	Assignments	Participation in curricular/ co-curricular	Quizzes/
Category			activities/presentation	attendance
Marks (40)	(20)	(5)	(5)	(10)
Remember				5
Understand		3		5
Apply	5		5	
Analyze	10			
Evaluate	5			
Create		2		

Table 4: Marks distribution for different CIE assessment tools as per Bloom's Taxonomy

The continuous internal evaluation under each theory course include **minimum** 2 Class tests/Tutorials, 1 Assignment, 2 Quiz and 1 Presentation on external participation in curricular/co-curricular activities/assignments as per the following schedule:

SL#	Evaluation methods	Total unit*	Total Marks	Schedule *
1	Class test/ Tutorial	2	20	 1st test – after 14th class 2nd test – after 28th class
2	Assignment	1	5	Initiate preferably after 16 th class
3	Presentation	1	5	 After 25th class (based on assignment, case study, mini survey, mini project, field visit, etc.)
4	Quiz	2	5	 1st Quiz – before 14th class 2nd Quiz – before 28th class
	Attendance	_	5	 Shall be calculated as per the 'Marks calculation for class attendance'
	Total Marks			40

Table 5: Suggested schedule of different assessment tools of CIE

* If deemed necessary, course teachers can slightly change the schedule of tests/ assignments in consultation with the Chairman of the respective Exam Committee.

Marks calculation for class attendance

The marks obtained by a student in class attendance shall be calculated in proportion to the total number of classes attended by that student, i.e.,

Marks in class attendance = $\frac{Number \ of \ classes \ attended \ by \ a \ student}{Total \ number \ of \ classes \ taken \ in \ a \ course}$

 \times Total marks in class attendence (i.e., 10).

Marks in class attendance shall be presented in two decimal places. A student with a class attendance of less than 40% in a particular course will get zero (0) for that course.

Example: Suppose 28 classes were conducted in a course and a student attended 24 classes. Then his/her marks in the class attendance (out of 10) is:

Marks in class attendance = $\frac{24}{28} \times 10 = 8.57$

3.3 Semester End Examination (SEE) for Theory Courses - 60 Marks

Duration of SEE shall be 3 hours. Each assessment method of SEE adopts the following marks distribution in accordance with the Bloom's Taxonomy:

Bloom's Category	SEE (60)
Remember	10
Understand	10
Apply	15
Analyze	10
Evaluate	10
Create	5
Total Marks	60

Table 6: Marks distribution of SEE of Theory courses as per Bloom's Taxonomy

Questions Pattern for a Theory Course

As per OBE guideline, each course should be evaluated considering six learning levels and thus the question papers of **SEE** should be designed to evaluate student's ability in remembering, understanding, applying, analyzing, evaluating, and creating. Under this circumstance, a question paper for a theory course supposed to consider the following six parts:

- Part A: Questions related to remembering,
- Part B: Questions related to understanding,
- Part C: Questions related to applying,
- Part D: Questions related to analyzing,
- Part E: Questions related to evaluating, and
- Part F: Questions related to creating.

The questions pattern with marks distribution is outlined below:

Section	Bloom's Category	SEE (60)	General instructions	Marks
Part A	Remember	10	Answer any 05 out of 06	5×2.0=10
Part B	Understand	10	Answer any 04 out of 05	4×2.5=10
Part C	Apply	15	Answer any 03 out of 04	3×5.0=15
Part D	Analyze	10	Answer any 02 out of 03	2×5.0=10
Part E	Evaluate	10	Answer any 02 out of 03	2×5.0=10
Part F	Create	5	Answer any 01 out of 02	1×5.0=05
Т	otal Marks	60	-	60

Table 7: SEE questions pattern for theory courses

Choosing Appropriate Action Verbs

It is important to use appropriate action verbs for setting questions in the class tests, tutorials, Quiz or even in the semester end examinations. The use of appropriate action verbs facilitates alignment of program and course learning outcomes and course learning outcomes with assessments. Some examples of appropriate action verbs to be used to assess student's competency at different learning levels are summarized in the table below:

Learning	Description	Suggested action verbs	
levels		(Start questions with)	
Level 1: Remembering	Retrieving, recognizing, and recalling relevant knowledge from long- term memory	Define, Count, Draw, Find, Identify, Label, List, Match, Name, Quote, Recall, Recite, Tell, Write	
Level 2: Understanding	Constructing meaning from oral, written, and graphic messages through interpreting, exemplifying, classifying, summarizing, and explaining	Describe, Discuss, Explain, Give examples of, Conclude, Demonstrate, Identify, Illustrate, Interpret, Predict, Review, Summarize	
Level 3: Applying	Carrying out or using a procedure for executing, or implementing	Apply, Calculate, Predict, Solve, Determine, Compute, Execute, Implement, Prepare, Produce, Select, Show, Transfer, Use	
Level 4: Analyzing	Breaking material into constituent parts, determining how the parts relate to one another and to an overall structure or purpose through differentiating, organizing, and attributing	Analyze, Characterize, Classify, Compare, Contrast, Differentiate, Discriminate, Distinguish, Debate, Examine, Outline, Relate, Separate, Categorize, Simplify, Associate	
Level 5: Evaluating	Making judgments based on criteria and standards through checking and critiquing	Appraise, Argue, Assess, Choose, Conclude, Criticize, Determine, Decide, Evaluate, Judge, Justify, Predict, Prioritize, Prove, Rank, Rate, Relate, Select, Support	
Level 6: Creating	Putting elements together to form a coherent or functional whole; reorganizing elements into a new pattern or structure through generating, planning, or producing	Construct, Create, Compose, Design, Derive, Develop, Formulate, Generate, Integrate, Invent, Make, Modify, Organize, Perform, Plan, Produce, Propose, Rewrite	

Table 8: Suggested action verbs for questions setting at different learning levels

4. Evaluation System for LAB Courses

Marks of each LAB course is 100 marks. Like Theory courses, the assessment pattern of a LAB course also comprises – Continuous Internal Evaluation (CIE), and Semester End Examination (SEE) with the following marks distribution:

- Continuous Internal Evaluation (CIE) carries 60 Marks.
- Semester End Examination (SEE) carries 40 Marks.

Individual students shall be evaluated in a LAB course based on the following criteria with the following marks distribution:

SI.#	Assessment Techniques	Marks/					
		Percentage					
Continuous Internal Evaluation (CIE) – 60% marks							
1	LAB tests 20%						
2	LAB Report/Assignment / Presentation 10%						
3	LAB Participation and Performance/Quiz 20%						
4	LAB Attendance 10%						
Semester End Examination (SEE) – 40% marks							
5	5 LAB Final Exam 30%						
6	10%						
Total 100%							

Table 9: Marks distribution of LAB courses with different assessment techniques

4.1 Continuous Internal Evaluation (CIE) for LAB Courses - 60 Marks

The continuous internal evaluation under each LAB course shall include **minimum** 2 LAB tests, 1 Assignment with presentation, Lab performance as per the following schedule:

SL#	Evaluation	Total unit	Total	Schedule *
	methods		Marks	
1	LAB test	2	2×10=20	 1st test – after 7th class 2nd test – after 14th class
	Assignment	1	5	 Initiate preferably after 8th class
2	Presentation	1	5	 After 12th class (based on assignment, case study, mini survey, mini project, field visit, etc.)
3	LAB Performance	Quiz (2)	2×5=10	 1st test – before 7th class 2nd test – before 14th class
		Performance assessment (1)	10	 Performance should be assessed after each LAB class based on completion of the assigned problems/tasks
4	LAB Attendance	-	10	 Shall be calculated as per the 'Marks calculation for class attendance'
Total Marks		60		

Table 10: Suggested schedule of different assessment tools of CIE

* If deemed necessary, course teachers can slightly change the schedule of tests/ assignments in consultation with the Chairman of the respective Examination Committee.

4.2 Semester End Examination (SEE) for LAB Courses - 40 Marks

The SEE of a LAB course shall be conducted as per the following modalities:

- Course teacher will prepare question paper for SEE and responsible for evaluating SEE scripts.
- © Course teacher and at least two additional faculty members, nominated by the respective exam committee, will be responsible for conducting LAB exam and in LAB evaluation/viva for each course.